

Deep Inelastic Scattering

Collider Physics Toni Baroncelli

Why Deep Inelastic Scattering?

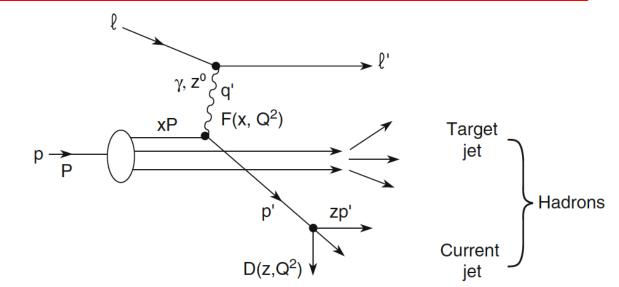
"Collider Physics" and Deep Inelastic Scattering

- Colliders are today the most powerful instrument to study the innermost structure of matter
- Proton-proton colliders are the accelerators that can reach the highest energies
- Proton are very complex objects, with a complex internal structure
- The interpretation of scattering experiments need to be based on the understanding of the proton structure
- The scattering lepton-nucleon allows us to study the structure of the proton

Many generation of scattering experiments.

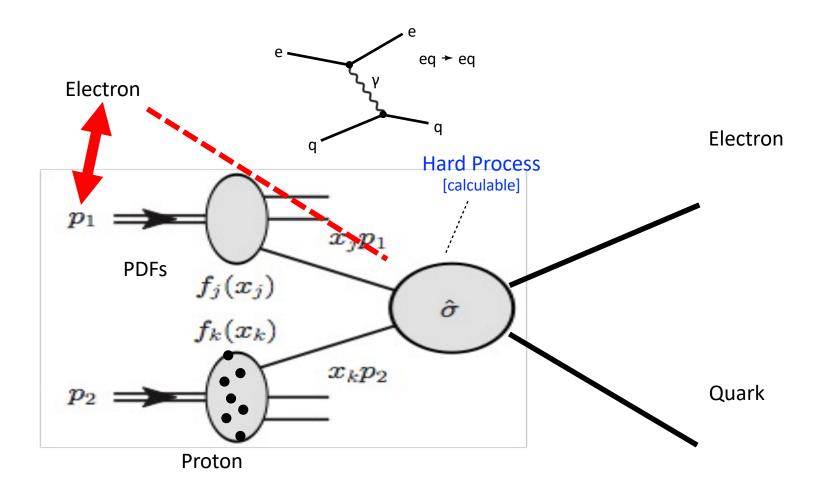
- Initially they used leptons (mostly electrons) produced in accelerators and sent on a target
- The last generation was the HERA collider at Desy, Germany

30 GeV electrons against 900 GeV protons



Proton-Proton vs Electron-Proton Scattering

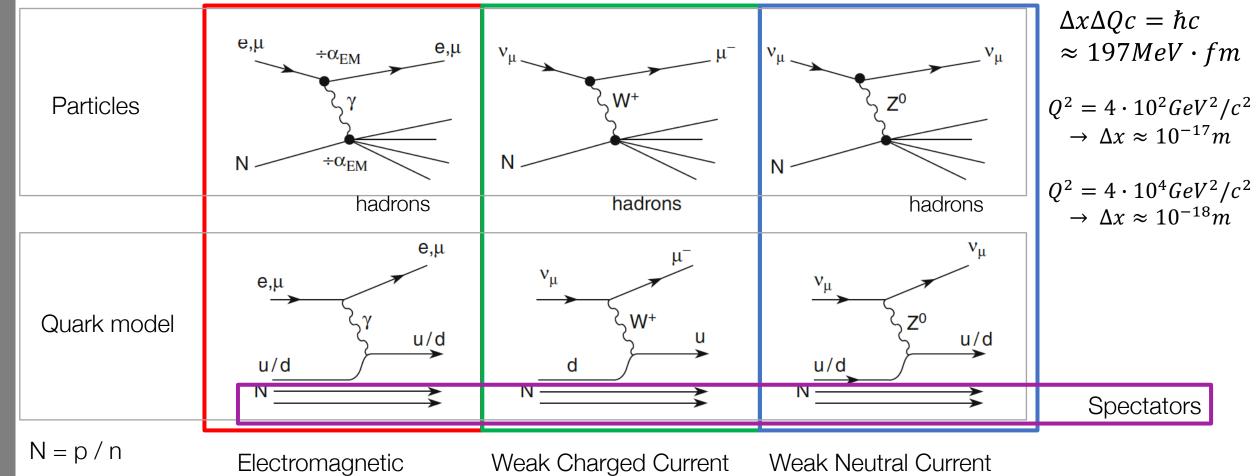
PDFs are needed to compute cross-section \rightarrow How to measure PDFs ? Unfolding 2 PDFs is ~difficult \rightarrow replace p with e !



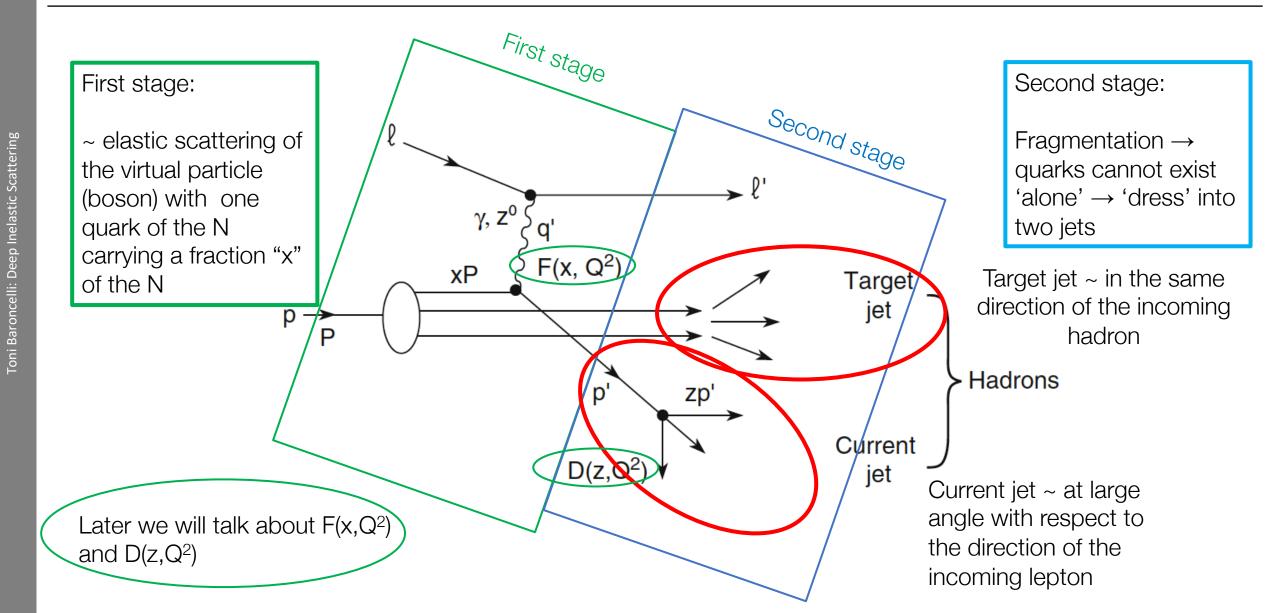
Inelastic lepton-nucleus scattering

$$ep: e^{\pm} + p \rightarrow e^{\pm} + X^{+}$$
$$\mu p: \mu^{\pm} + p \rightarrow \mu^{\pm} + X^{+}$$

$$\nu_{\mu} p(CC) : \nu_{\mu} + p \to \mu^{-} + X^{++}, \ \overline{\nu}_{\mu} + p \to \mu^{+} + X^{0}$$
$$\nu_{\mu} p(NC) : \nu_{\mu} + p \to \nu_{\mu} + X^{+}, \ \overline{\nu}_{\mu} + p \to \overline{\nu}_{\mu} + X^{+}.$$

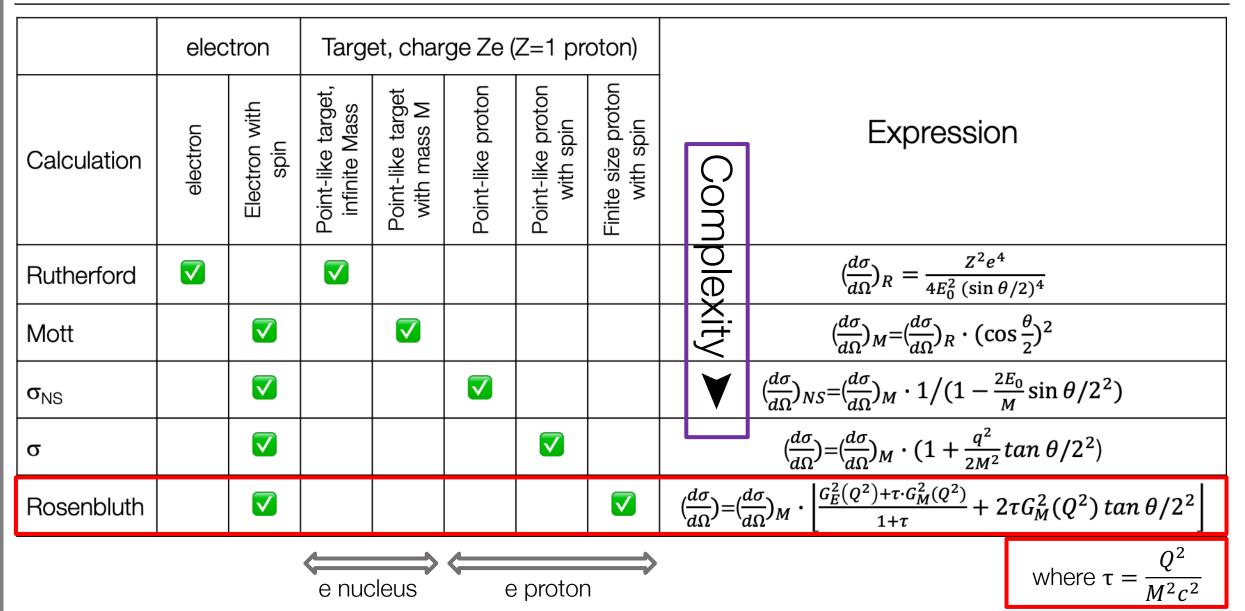


The Story of an Inelastic Lepton-Nucleon Scattering



Toni Baroncelli: Deep Inelastic Scattering

Elastic Electron Nucleus/Proton Scattering



Deep Inelastic Scattering, Kinematics & Variables

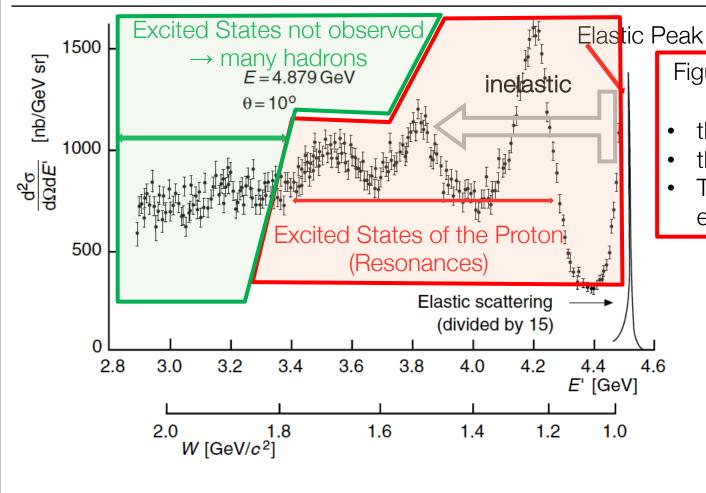


Figure \leftarrow electron-proton scattering.

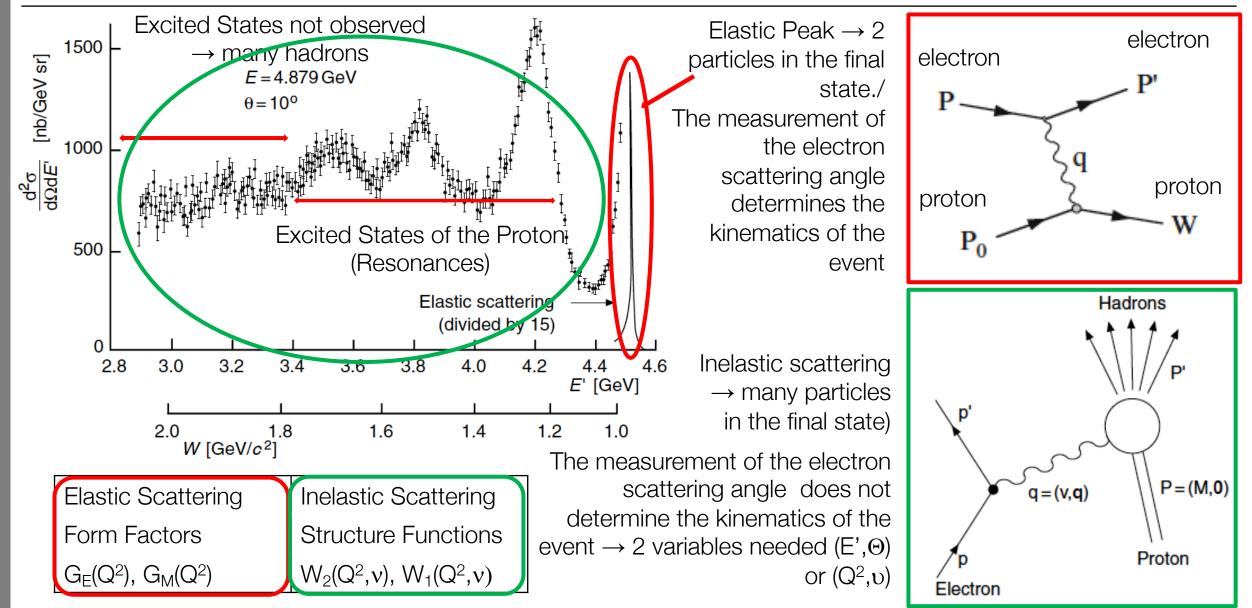
- the incoming electron energy was E = 4.9 GeV
- the scattering electron angle was fixed to $\theta~=10^{\circ}$
- The electron scattering energy is shown (part of the energy to the proton!)

We see

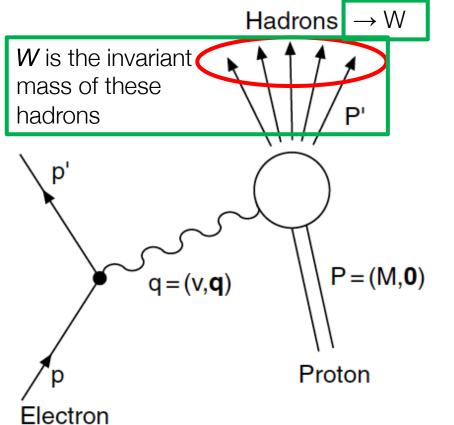
- sharp elastic scattering peak (scaled down by 15)
- peaks at lower electron energies associated with inelastic excitations (excited states of the nucleon which we call nucleon resonances).
- Further down in energy, states with many hadrons

These excited states of the proton are an indication that the proton is a composite system. \rightarrow quark model.

Deep Inelastic Scattering, Kinematics & Variables



Vocabulary and Kinematics of DIS



Electron-proton inelastic scattering: more than the two incoming particles in the final state.

The scattering occurs between a proton at rest and an exchanged photon. In this representation the kinematics is defined as follows (*use quadri-momenta*):

W is defined as the invariant mass of all hadrons of the final state (W>M)

$$W^{2} = P'^{2} = (P + q)^{2} = M^{2} + 2Pq + q^{2} =$$

= M^{2} + 2Mv - Q^{2} (Q^{2} = -q^{2})
$$v = \frac{Pq}{M}$$

Quadri-momenta of particles are as follows: the target proton is at rest P=(Mc,0), the exchanged photon is

And where

$$q = ((E-E')/C, \mathbf{q}) \longrightarrow \frac{Pq}{M} = \nu = \frac{Mc \cdot \frac{E-E'}{C} - q \cdot 0}{M} = E - E'$$

Therefore, the energy transferred by the virtual photon from the electron to the proton in the laboratory frame is: v = E - E'

Elastic and Inelastic Scattering

• Elastic scattering: G_E (Q²) and G_M (Q²) form factors.

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left[\frac{G_E^2(Q^2) + \tau \cdot G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \tan \frac{\theta^2}{2}\right] \text{ where } \tau = \frac{Q^2}{M^2 c^2}$$

 The Q² dependence of the form factors gives us information about the radial charge distributions and the magnetic moments.

In elastic scattering, one parameter only fixes the kinematics of the event.

Example: the scattering angle θ is fixed, \rightarrow squared four-momentum transfer Q^2 , the energy transfer ν , the energy of the scattered electron E are also fixed. Since

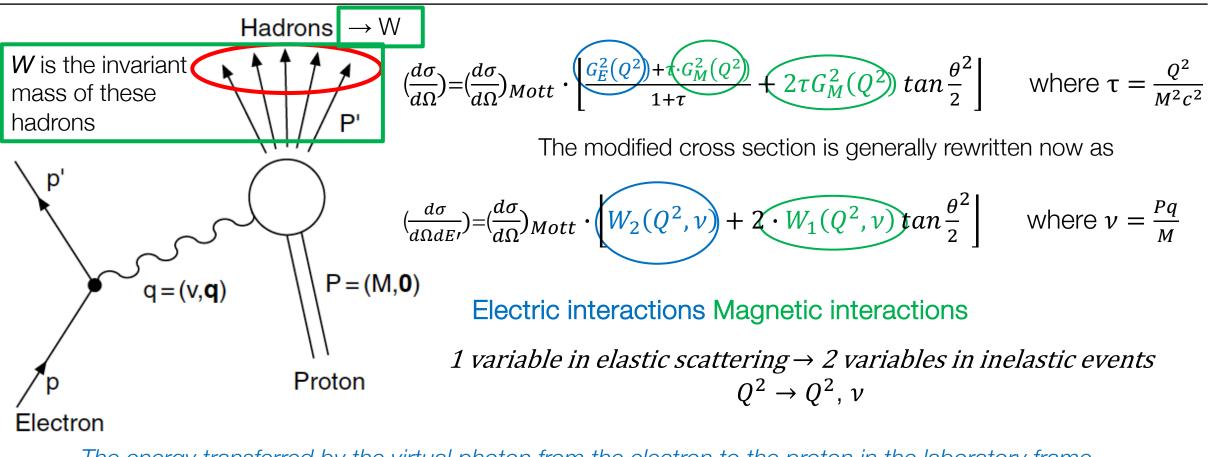
$$W = M$$

(and remembering tha We get

g that
$$W^2 = P'^2 = (P+q)^2 = M^2 + 2Pq + q^2 = M^2 + 2M\nu - Q^2$$
 (inelastic scattering)
 $M^2 = M^2 + 2M\nu - Q^2 \longrightarrow 2M\nu - Q^2 = 0.$ (elastic scattering)

Inelastic scattering: W_1 and W_2 structure functions.

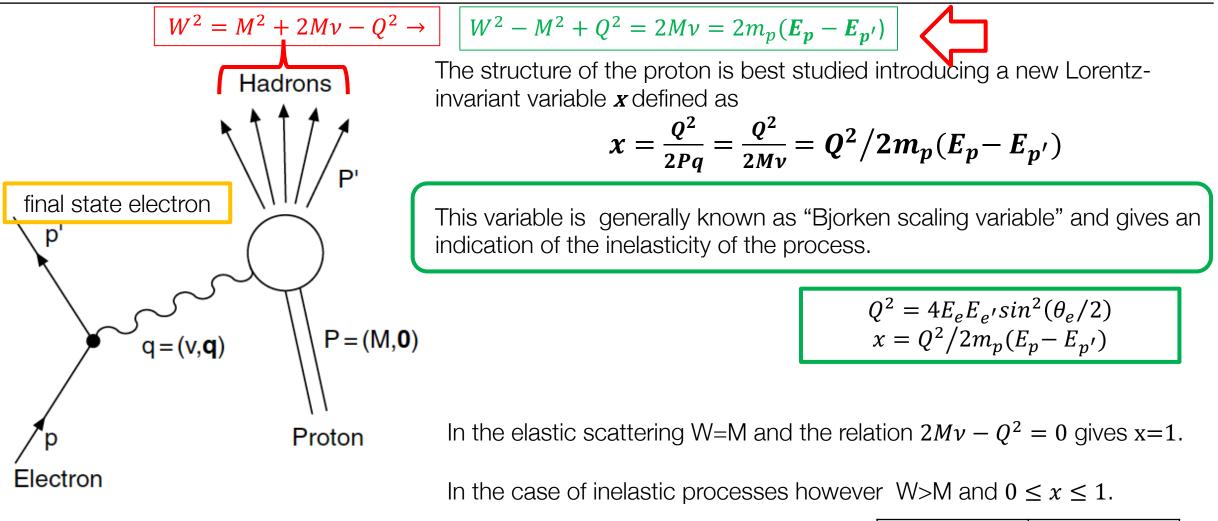
Evolving the Rosenbluth Cross Section



The energy transferred by the virtual photon from the electron to the proton in the laboratory frame is: v = E - E'

Here $G_E(Q^2)$ and $G_M(Q^2)$ are the electric and magnetic form factors both of which depend on Q^2 . $W_2(Q^2,n)$ and $W_2(Q^2,n)$ are the electric and magnetic structure functions both of which depend on Q^2 and v

The Bjorken Scaling Variable "x"

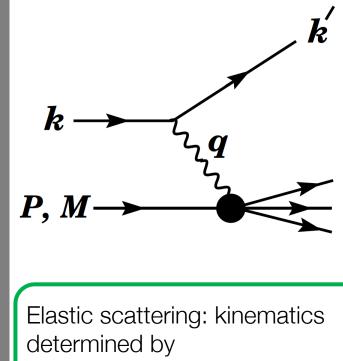


To deduce the momentum transfer $Q^2\,$ and the energy loss v, the energy and the scattering angle of the electron have to be determined in the experiment

W = M	W > M		
x = 1	$0 \le x \le 1$		

Summary of DIS Invariant Quantities

le



 $\succ \theta$ lepton scattering angle

Inelastic scattering: kinematics determined by

- θ lepton scattering angle
- E' final lepton energy

•
$$E, E'$$
 initial and final lepton energy
• θ lepton scattering angle
• M nucleon mass
 $v = \frac{q \cdot P}{M} = E - E'$
 $Q^2 = -q^2$
 $= 2(EE' - \vec{k} \cdot \vec{k'}) - m_\ell^2 - m_{\ell'}^2$
if: $EE' \sin^2(\frac{\theta}{2}) \gg m_\ell^2, m_\ell^2,$ then
 $Q^2 \approx 4 EE' \sin^2(\frac{\theta}{2})$
 $x = \frac{Q^2}{2M\nu}$
 $x = \frac{Q^2}{2M\nu}$
 $p = \frac{q \cdot P}{k \cdot P} = \frac{v}{E}$
 $W^2 = (P + q)^2 = M^2 + 2M\nu - Q^2$
 $s = (k + P)^2 = \frac{Q^2}{k} + M^2 + m_\ell^2$
 $lepton-nucleon defined by the second secon$

xy

lepton's energy loss

 Q^2 value

 Q^2 value when m_{ℓ}^2, m_{ℓ}^2 , negligeable

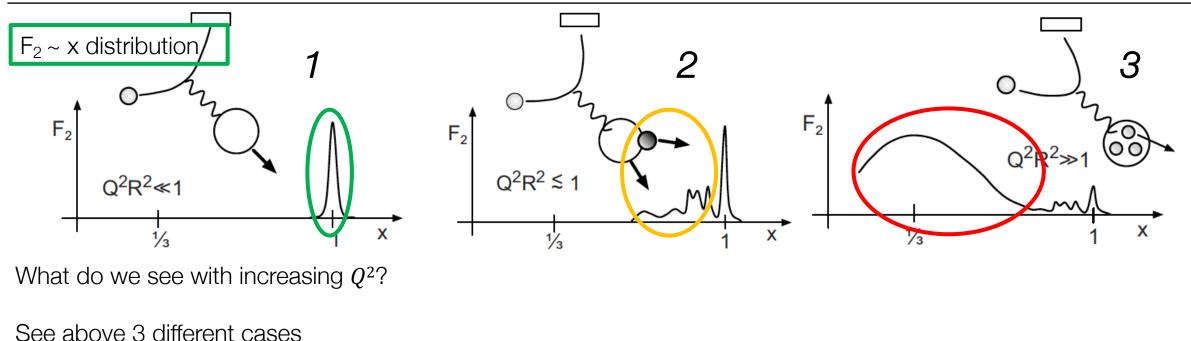
fraction of the nucleon's momentum *carried by the struck quark*

fraction of the lepton's energy lost in the nucleon rest frame

mass squared of the system recoiling against the scattered lepton

lepton-nucleon center-of-mass energy

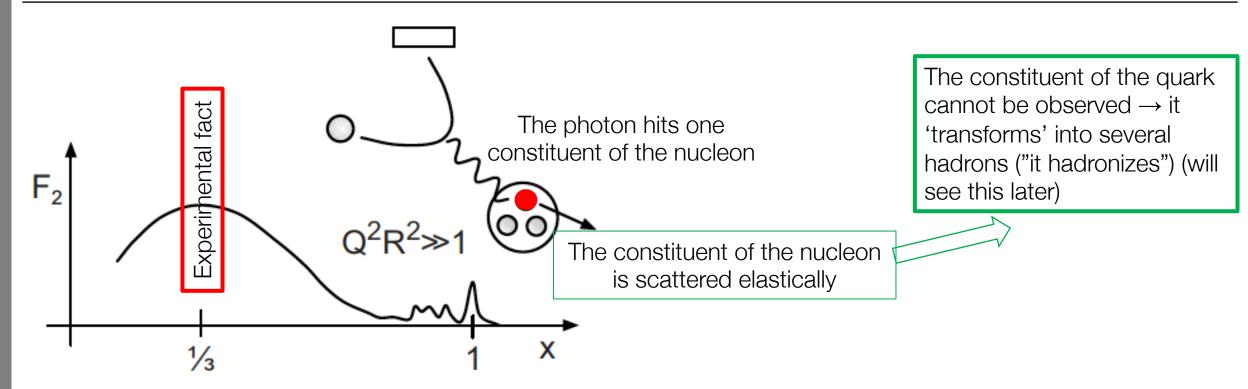
Understanding 'x'



Q2 \uparrow wave length of the probe particle \downarrow

- 1. The Q² of the reaction is ~low, the **nucleon** is seen by the exchanged photon as **a unique obje**ct. We have elastic scattering
- 2. The Q² of the reaction is not as ~low as in 1, not enough to probe the inner structure but enough to excite the nucleon
- 3. The Q² of the reaction is ~large enough to see the internal structure of the proton and the photon scatters elastically on one of the **internal constituents of the nucleon**

More Understanding of 'x'



The peak at ~1/3 can be understood as the "most probable" x value corresponding to the elastic scattering of the photon and one of the nucleon constituents.

If we assume that the 'x' budget is equally shared by 'n' nucleon constituents then

3

$$x = \frac{1}{n} \frac{Q^2}{2Pq} = \frac{1}{n} \frac{Q^2}{2My} \longrightarrow$$
This term is equal to 1 in case of elastic scattering
$$= \frac{1}{n} \rightarrow \text{there are 3 components in the nucleon}$$

From W_2 and W_1 to F_2 and F_1

For elastic scattering, two form factors G_E^2 , G_M^2 are necessary to describe the electric and magnetic distributions. The cross-section for the scattering of an electron off a nucleon is described by the Rosenbluth formula,.

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left[\frac{G_E^2(Q^2) + \tau \cdot G_M^2(Q^2)}{1 + \tau} + 2\tau G_M^2(Q^2) \tan \frac{\theta^2}{2}\right] \leftarrow \text{Elastic Scattering, } Q^2 \quad \text{where } \tau = \frac{Q^2}{M^2 c^2}$$

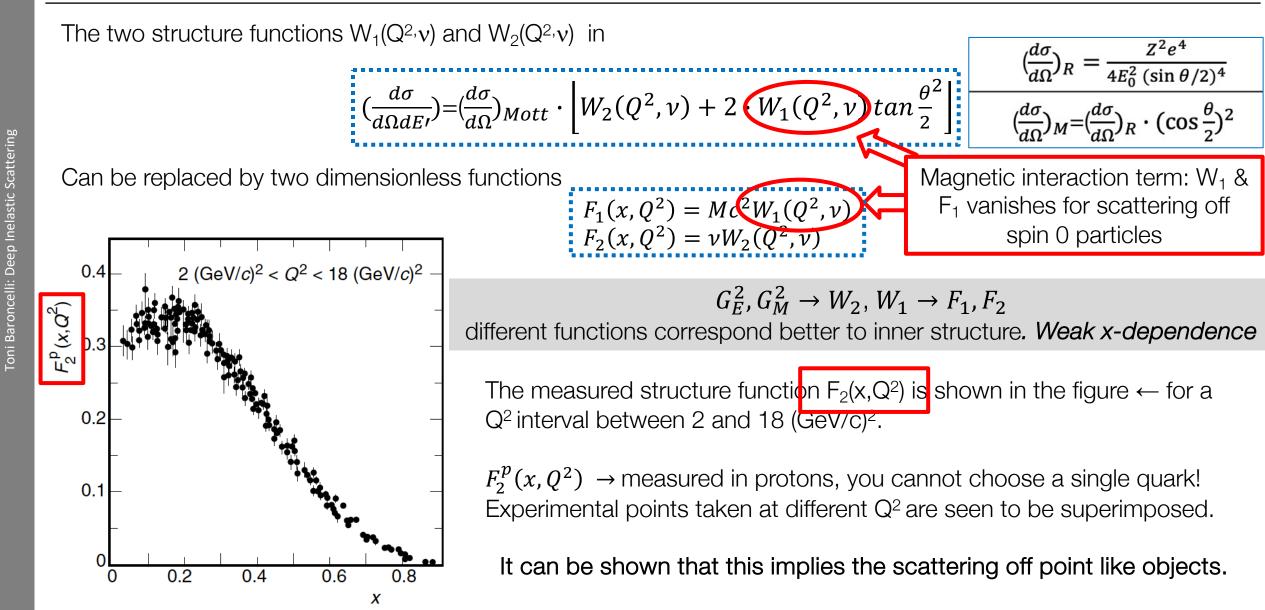
In the e-p inelastic scattering, it transforms into

$$\left(\frac{d\sigma}{d\Omega dE'}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left[W_2(Q^2, \nu) + 2 W_1(Q^2, \nu) tan \frac{\theta^2}{2}\right] \quad \leftarrow \text{Inelastic Scattering, } Q^2, \nu$$

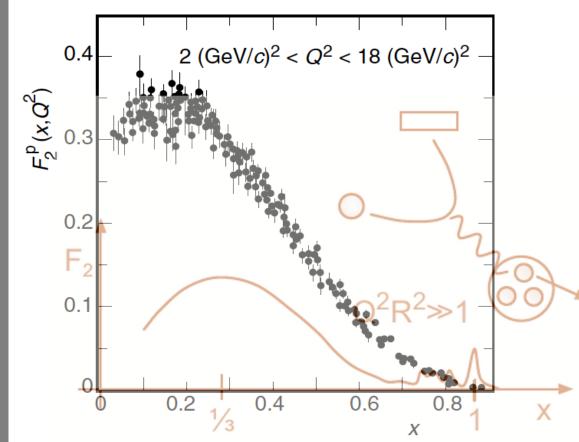
where the first term describes electrical interactions and the second term represents the magnetic interaction.

One variable, Q², in the elastic case \rightarrow two variables, Q² and v, in the inelastic case

From W_2 and W_1 to F_2 and F_1



F_2 measurement



The peak of the experimental distribution is seen at a value of about ~ 0.2, lower than the 1/3 shown in the qualitative distribution. The shift is due to understood effects that will be discussed later

(Electron, Muon, Neutrino) – Proton scattering: History

Photon exchange:

You need to use charged particles!

Studying the nucleon's constituents the wave length of the probe particle λ has to be small compared to the nucleon's radius, R

 $\lambda \ll R \ \to \ Q^2 \gg \hbar^2/R^2$

Large Q^2 values are needed \rightarrow high energies are required.

- The first generation ~1960 @ SLAC 25 GeV electrons on a target
- The second generation ~ 1980 @ CERN using beams of *muons* of up to 300 GeV (*). Muons on a target
- The last generation ~1990 → 2007 @ DESY Collider HERA: 30 GeV electrons against 900 GeV protons (see next slides).

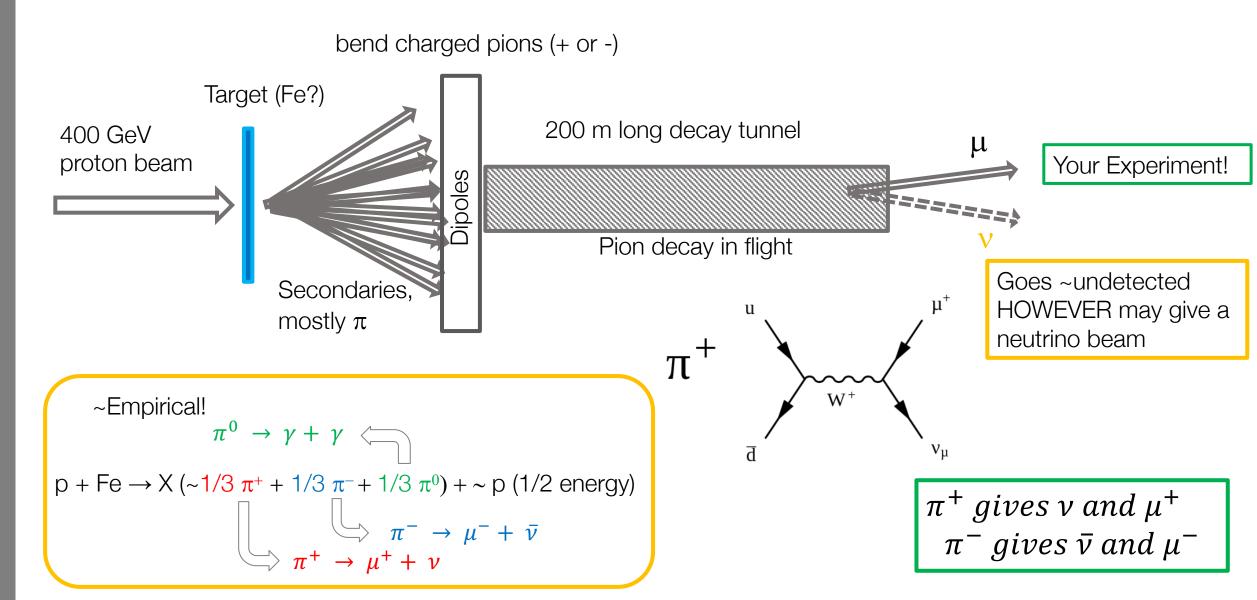
In the SLAC experiments, the basic properties of the quark and gluon structure of the hadrons were established.
 The second and the third generations of experiments are at the basis of the

Quantum Chromodynamics,

the theory of the strong interaction.

(*) Protons of 400 GeV on a target produced pions which were kept confined in a 200 meters tunnel. During the flight part of the pions decayed into muons which were collected into a beam with energies up to 300 GeV.

Producing Muon Beams



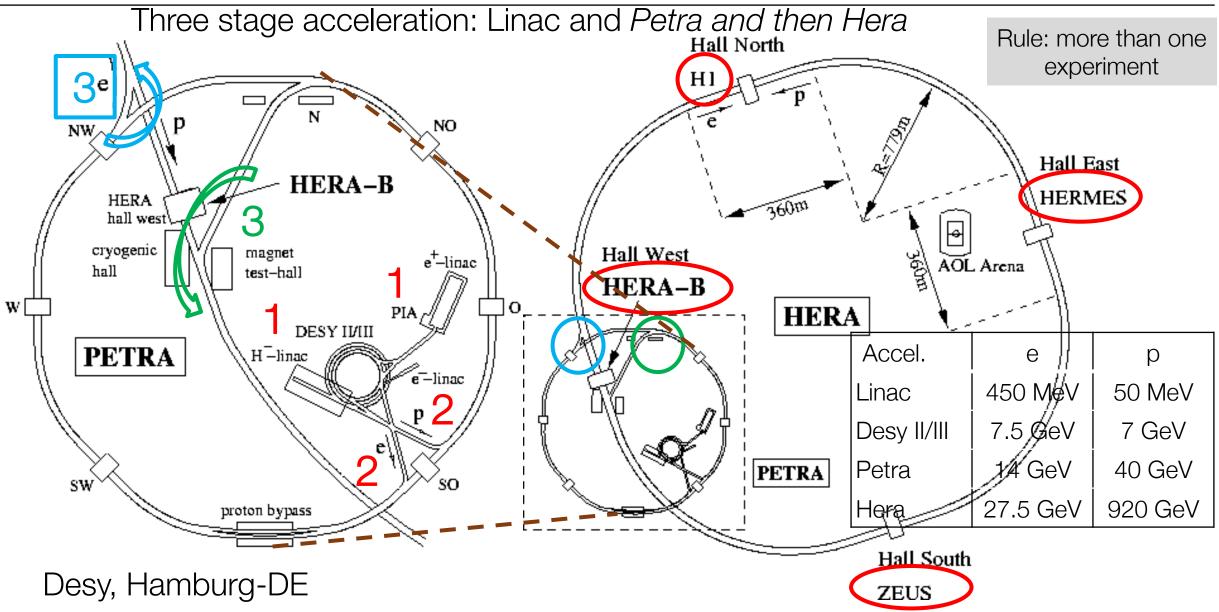
Circular e + p accelerator @ Desy, Hamburg-DE.

- 15 to 30 m underground and circumference of 6.3 km. Leptons and protons \rightarrow two independent rings
- At HERA, 27.5 GeV electrons (or positrons) collided with 920 GeV protons, cms energy of 318 GeV (*).
- electrons or positrons: 450 MeV, 7.5 GeV, 14 GeV, 27.5 GeV.
- Protons: 50 MeV, 7 GeV, 40 GeV, 920 GeV.
- 4 interaction regions, 4 experiments H1, ZEUS, HERMES and Hera-B.
- About 40 minutes to fill the machine
- Operated between 1992 and 2007.

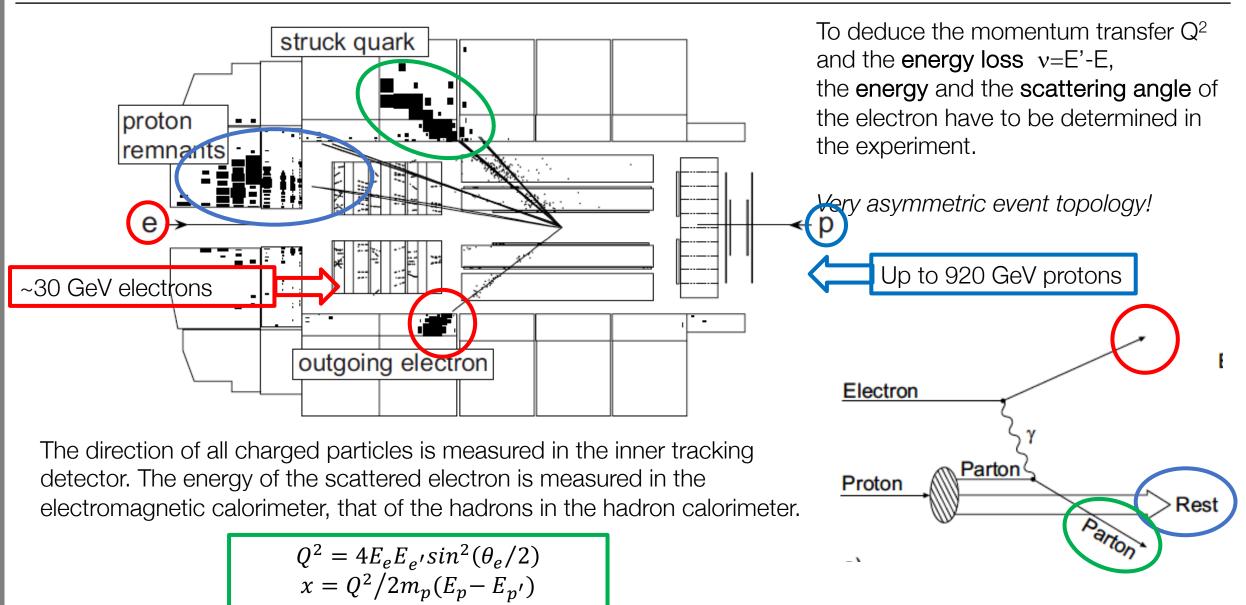
$$(*) E_{cm}(or \ cms) = \sqrt{m_p^2 + m_e^2 + 2E_p E_e (1 - \beta_1 \beta_2 \cos(\theta))} \approx \sqrt{2E_p E_e \cdot 2}$$

At high energy $\beta_1 \cdot \beta_2 = 1 \cdot -1$

HERA Accelerator Complex

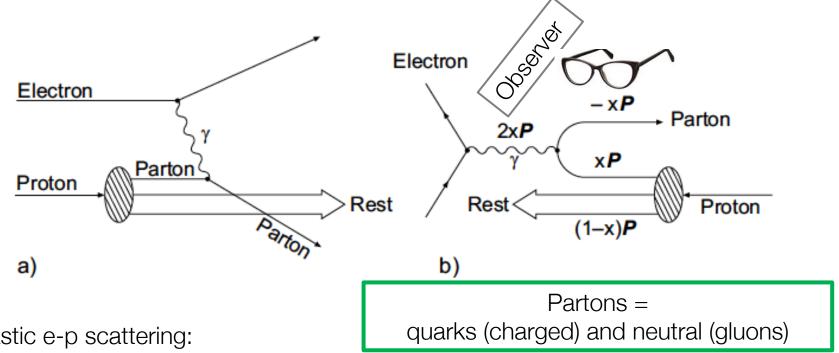


Display of one DIS event in Hera



Choosing the Reference Frame of the DIS: Parton Model

- Physics is independent
 of reference frame
- Proton observed in a reference system where it appears to be very fast → only longitudinal components, neglect p_T
- Masses can be neglected

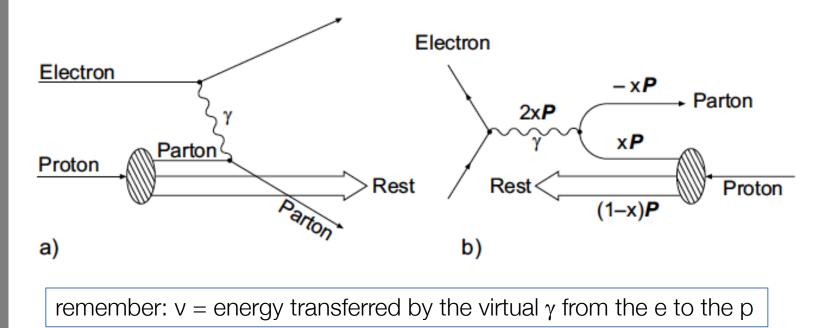


parton point of view of deep inelastic e-p scattering:

- (a) in the laboratory system
- (b) in a fast moving system (the Breit frame) in which the momentum transferred by the virtual photon is zero. Hence the momentum of the parton hit by the electron is turned around but its magnitude is unchanged.

Decomposing the proton into a sum of independent components allows us to see the Interaction electron proton = sum of elastic interactions between the electron (via photon exchange) and partons

The Impulse Approximation



It is assumed that

 the duration of the interaction photon – parton is so short that partons do not have time to interact between themselves →

Impulse Approximation

Masses can be neglected $\rightarrow Q^2 \gg M^2 c^2$

In the laboratory system the photon which has four-momentum q=(v/c, q) interacts with a parton carrying the four-momentum xP

The reduced wave-length λ - of the virtual photon is given by

$$\lambda = \frac{\hbar}{|\boldsymbol{q}|} = \frac{\hbar}{\sqrt{Q^2}}.$$

This gives the size of the structures of the proton we can study using a photon with momentum transfer Q²

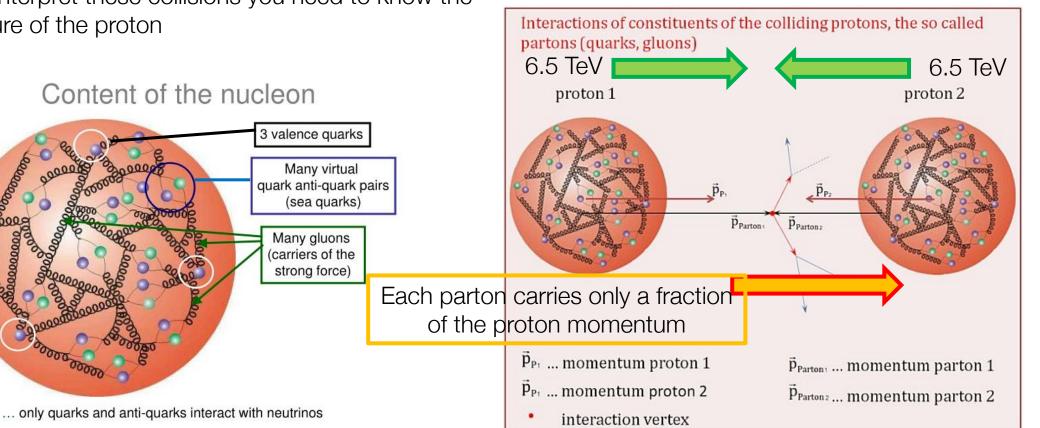
Why do we Need to Study e Scattering on p/Nuclei?

LHC: the largest accelerator in the world: proton beam against proton protons at a cms energy of 6.5 TeV + 6.5 TeV. collisions between two very complex objects!

 \rightarrow To interpret these collisions you need to know the structure of the proton

Content of the nucleon

$F_2(x, Q^2)$ tells us how quarks are distributed in x



How to measure the $W_2 \rightarrow F_2$ Structure Function?

• Scattering ep and μp (at accelerators)

 $ep: e^{\pm} + p \rightarrow e^{\pm} + X^+$

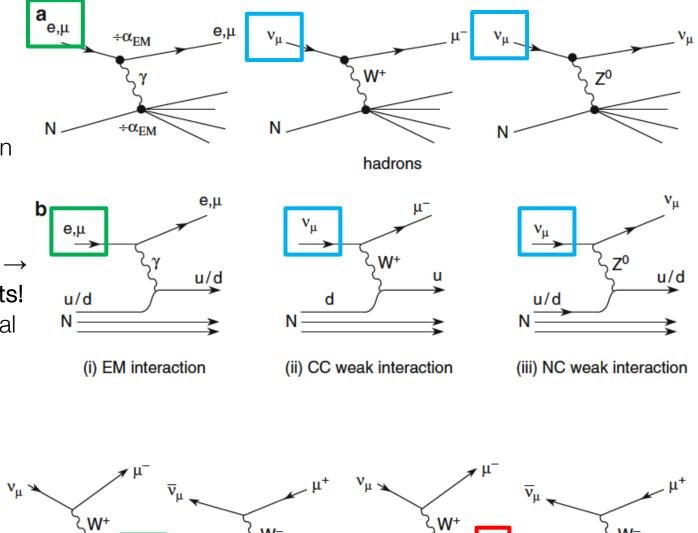
 $\mu p: \ \mu^\pm + p \to \mu^\pm + X^+$

- Scattering of leptons (electrons and neutrinos) on a hydrogen (1p), deuterium (1p+1n) and heavier nuclei target (targets with #protons=#neutrons).
- F_2^d : Scattering on nuclei the structure function is always given per nucleon (protons and neutrons) \rightarrow How to distinguish F_2^p from F_2^n ? Compare targets!
- The structure function of the deuteron Fd_2 is equal to the average structure function of the nucleons

 $F_{2}^{N} F_{2}^{d} \approx \frac{F_{2}^{p} + F_{2}^{n}}{2} = F_{2}^{N}$

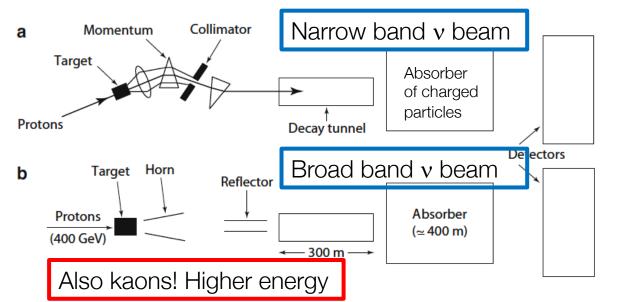
Neutrinos on a target — it is (im)possible to distinguish between 'valence' and 'sea' quarks

 $\nu_{\mu} p(CC) : \nu_{\mu} + p \to \mu^{-} + X^{++}, \ \overline{\nu}_{\mu} + p \to \mu^{+} + X^{0}$ $\nu_{\mu} p(NC) : \nu_{\mu} + p \to \nu_{\mu} + X^{+}, \ \overline{\nu}_{\mu} + p \to \overline{\nu}_{\mu} + X^{+}$



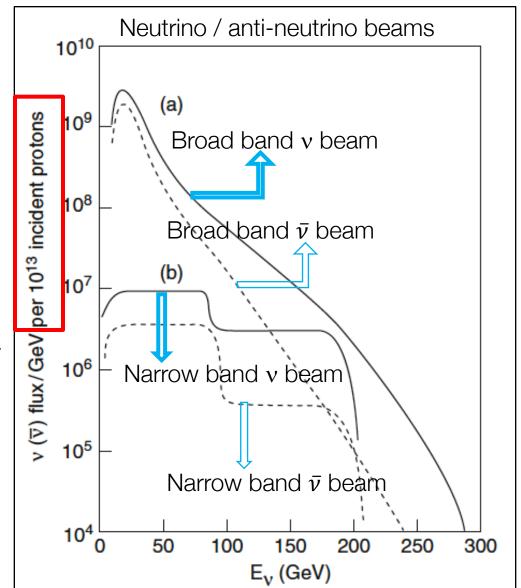
Of Neutrino Beams

$\begin{array}{ccc} \pi^{-} \rightarrow \mu^{-} + \bar{\nu} \\ \pi^{+} \rightarrow \mu^{+} + \nu \end{array}$

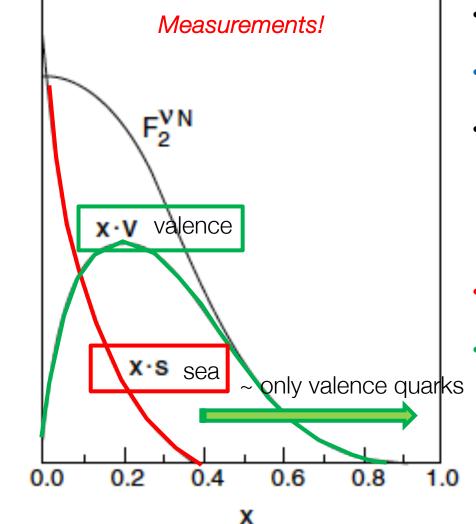


Narrow band v beam: ~ π selected in momentum ~ low intensity Broad band v beam: ~ π not selected in momentum ~ high intensity Experiments:

The mean free path in iron of 10GeV neutrinos is $\lambda \approx 2.6 \cdot 10^9 Km$ (~ 20 cm for hadrons!). This means that only a very small fraction $3 \cdot 10^{-13}$ of 10 GeV neutrinos interact in a meter of iron. With a flux of 10^{12} neutrinos (for 10^{13} accelerated protons incident on the target), there are only 0.3 interactions in one meter of iron.



$F_2^{\nu N}$ from Neutrino-Nucleon Scattering



- Neutrino scattering gives complementary information about the quark distribution.
- Neutrinos couple to the weak charge of the quarks via the weak interaction.
- In neutrino scattering you distinguish between (spin \rightarrow helicity conservation \rightarrow different angular distributions)
 - types of quarks,
 - quarks and antiquarks.
- sea quarks contribute to F_2 only at small values of x; ~0 above x ~ 0.35.
- valence quarks F_2 maximum at x \approx 0.2 and \sim 0 for x \rightarrow 1 and x \rightarrow 0.

one quark alone ~never carries the major part of the nucleon momentum.

Structure Functions describe the internal structure of a nucleon. Let's say that

- A nucleon is made of quarks of type *f*,
- Each quark carries a charge $z_f \cdot e$;
- The electro-magnetic cross section for a scattering on a quark is $|z_f \cdot e|^2$
- $q_f(x)$ is the probability *f*-quark carries a fraction of the nucleon momentum in the interval (x, x + dx) (similarly $\overline{q_f}(x)$ for anti-quarks)
- There are two types of quarks:
 - valence quarks: they determine the quantum numbers of the nucleon
 - sea quarks, they exist in **pairs**, quark + anti-quark. They are produced and annihilated as virtual particles in the field of the strong interaction (as in the production of virtual electron–positron pairs in the Coulomb field)
- The nucleon also contains neutral components, *gluons*, with NO CHARGE and momentum distribution g(x)

The Structure Function $F_2(x)$ is the superposition of the momentum distributions carried by the quarks and weighted by x and z_f^2

$$F_{2(x)} = x \cdot \sum z_f^2 \cdot (q_f(x) + \overline{q_f}(x))$$

DIS is not sensitive to gluons (gq interaction)

The Structure of Hadrons: 'forward-1'

- deep inelastic scattering (DIS) → nucleon structure and information about the structure of the hadrons and the forces acting between them.
- By the mid-sixties a large number of apparently different hadrons were known.
- The quark model was invented to accommodate the 'zoo' of hadrons which had been discovered

		u	d	p (uud)	${ m n}$ (udd)
Charge	z	+2/3	-1/3	1	0
Isospin	I I_3	$\begin{vmatrix} 1 \\ +1/2 \end{vmatrix}$	$^{/2}$ $-1/2$	1/2 + 1/2 - 1/2	
Spin	<u>s</u>	1/2	1/2	1/2	1/2

Quantum numbers of u, d quarks and of protons and neutrons

Use information from both

- deep inelastic scattering and
- spectroscopy to

extract the properties of the quarks.

Idea: reconstruct the properties of the nucleons (charge, mass, magnetic moment, isospin, etc.) by combining the quantum numbers of these constituents.

Spin and Charge of Nucleons : 'forward-2'

		u	d	p (uud)	n (udd)
Charge	z	+2/3	-1/3	1	0
Isospin	I I_3	$\begin{vmatrix} 1 \\ +1/2 \end{vmatrix}$	$^{/2}$ -1/2	$+1/2^{1}$	/2 - 1/2
Spin	s	1/2	1/2	1/2	1/2

•	The quarks have spin 1/2	2
---	--------------------------	---

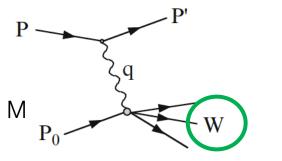
- in the quark model, their spins must combine to give the total spin 1/2 of the nucleon \rightarrow nucleons are built up out of at least 3 quarks.
- The proton has two u-quarks and one d-quark
- The neutron has two d-quarks and one u-quark.

- u and d quarks form an isospin doublet, it is natural to assume that also the proton and the neutron form an isospin doublet (I = 1/2) u-quark and d-quark can be exchanged (isospin symmetry) → proton ↔ neutron.
- The fact that the charges of the quarks are multiples of 1/3 is derived by the fact that
 - the maximum positive charge in hadrons is two (e. g., Δ^{++}). Generated by 3 u quarks \rightarrow charge +2e/3
 - the maximum negative charge is one (e. g., Δ^-). Generated by 3 d quarks -1e/3

One step back: Elaborating more on $F_2 \& F_1$

$$\left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\substack{\text{point}\\\text{spin 1/2}}} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{\mathrm{Mott}} \cdot \left[1 + 2\tau \tan^2 \frac{\theta}{2}\right] \quad \tau = \frac{Q^2}{4M^2c^2} \quad \text{Elastic scattering, one variable} \\ \text{Spin 1/2 e on spin 1/2 point-like p} \right]$$

If the reaction $\ell + N \rightarrow \ell' + X$ is inelastic \rightarrow the lepton scattering angle and energy are independent



$$W^{2} = (P_{0} + q)^{2} = M^{2} + q^{2} + 2M\nu = M^{2} - Q^{2} + 2M\nu > M^{2}$$
(while in elastic scattering W² = M² \rightarrow Q² = 2Mv $\rightarrow \nu - \frac{Q^{2}}{2M} = 0$))

 $P = (E, \mathbf{p}); P' = (E', \mathbf{p}')$ for the incident and scattered electron $P_0 = (M, 0); W = (E'_0, \mathbf{p}'_0)$ for the proton before and after impact.

p at rest, M =proton mass; $P_0^2 = M^2$; $P^2 = m_e^2$;

$$q = P - P' = (E - E', \mathbf{p} - \mathbf{p}') = (\nu, \mathbf{q});$$

$$q^2 = 2m_e^2 - 2E'E + 2pp'\cos(\theta) \rightarrow m_e \sim 0; p \sim E \rightarrow$$

$$q^2 = -2E'E(1 - \cos\theta) = -4EE'\sin^2(\frac{\theta}{2})$$

A bit of a calculation

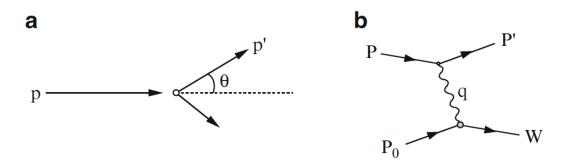
$$q = P - P' = (E - E', \mathbf{p} - \mathbf{p}') = (\nu, \mathbf{q})$$
(10.7)

and its square $t = q^2$ is

$$t = q^{2} = (P' - P)^{2} = (E'/c - E/c)^{2} - (\mathbf{p}' - \mathbf{p})^{2}$$
$$\xrightarrow{c=1}{\longrightarrow} 2m_{e}^{2} - 2E'E + 2p'p\cos\theta.$$
(10.8)

At high energy, the electron mass can be neglected ($m_e = 0, p \simeq E$), that is,

$$q^2 = -Q^2 \simeq -2EE'(1 - \cos\theta) = -4EE'\sin^2(\theta/2).$$
 (10.9)



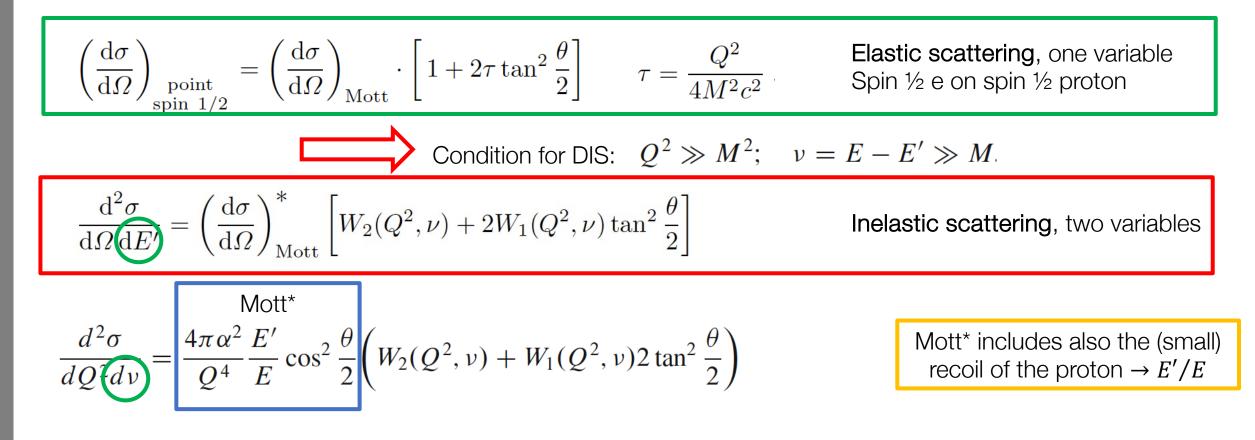
Scattering of electrons on nucleus/proton

	electron		Target, charge Ze (Z=1 proton)			(Z=1 pr	oton)		
Calculation	electron	Electron with spin	Point-like target, infinite Mass	Point-like target with mass M	Point-like proton	Point-like proton with spin	Finite size proton with spin	Expression	
Rutherford								$\left(\frac{d\sigma}{d\Omega}\right)_R = \frac{Z^2 e^4}{4E_0^2 (\sin\theta/2)^4}$	
Mott								$\left(\frac{d\sigma}{d\Omega}\right)_M = \left(\frac{d\sigma}{d\Omega}\right)_R \cdot \left(\cos\frac{\theta}{2}\right)^2$	
σ_{NS}								$\left(\frac{d\sigma}{d\Omega}\right)_{NS} = \left(\frac{d\sigma}{d\Omega}\right)_M \cdot 1/(1 - \frac{2E_0}{M}\sin\theta/2^2)$	
σ								$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{M} \cdot \left(1 + \frac{q^{2}}{2M^{2}}\tan\theta/2^{2}\right)$	
Rosenbluth								$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{d\sigma}{d\Omega}\right)_{M} \cdot \left[\frac{G_{E}^{2}(Q^{2}) + \tau \cdot G_{M}^{2}(Q^{2})}{1 + \tau} + 2\tau G_{M}^{2}(Q^{2}) \tan\theta/2^{2}\right]$	
	$\longleftrightarrow $								

e proton

e nucleus

Toni Baroncelli: Deep Inelastic Scattering



One step back: Elaborating more on $F_2 \& F_1$

$$\frac{d^2\sigma}{dQ^{\dagger}d\nu} = \frac{4\pi\alpha^2}{Q^4} \frac{E'}{E} \cos^2\frac{\theta}{2} \left(W_2(Q^2,\nu) + W_1(Q^2,\nu)2\tan^2\frac{\theta}{2} \right)$$

Mott^{*} includes also the (small) recoil of the proton $\rightarrow E'/E$

What happens if we, taking into account that nucleon is made of quarks, interpret the DIS scattering as interaction

Virtual photon with one quark?

Elastic scattering electron – quark (via photon exchange)?

Have to request that

the scattering is elastic: $\rightarrow 2M\nu - Q^2 = 0$. Use the "quark mass" *m* instead of proton mass

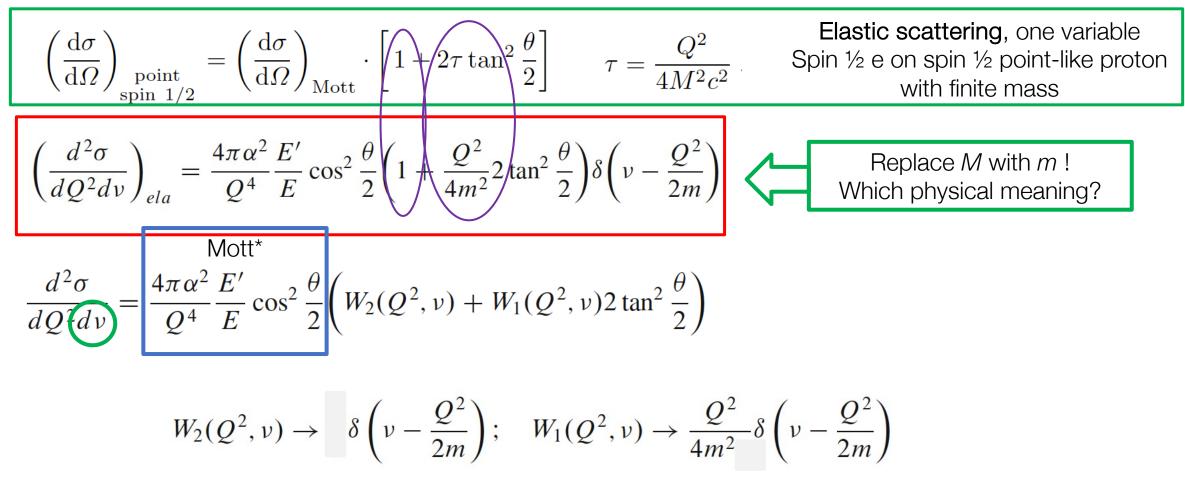
DIS of point-like particles with nucleons (p or n) \rightarrow sum of elastic scattering on components (with mass m) of nucleons

$$\left(\frac{d^2\sigma}{dQ'd\nu}\right)_{ela} = \frac{\overset{\text{Mott}^*}{4\pi\alpha^2} \frac{E'}{E} \cos^2 \frac{\theta}{2}}{Q^4} \left(1 + \frac{Q^2}{4m^2} 2\tan^2 \frac{\theta}{2}\right) \delta\left(\nu - \frac{Q^2}{2m}\right) \begin{array}{l}\delta \to \text{ condition for elastic scattering,}\\ \text{one variable}\end{array}$$

of

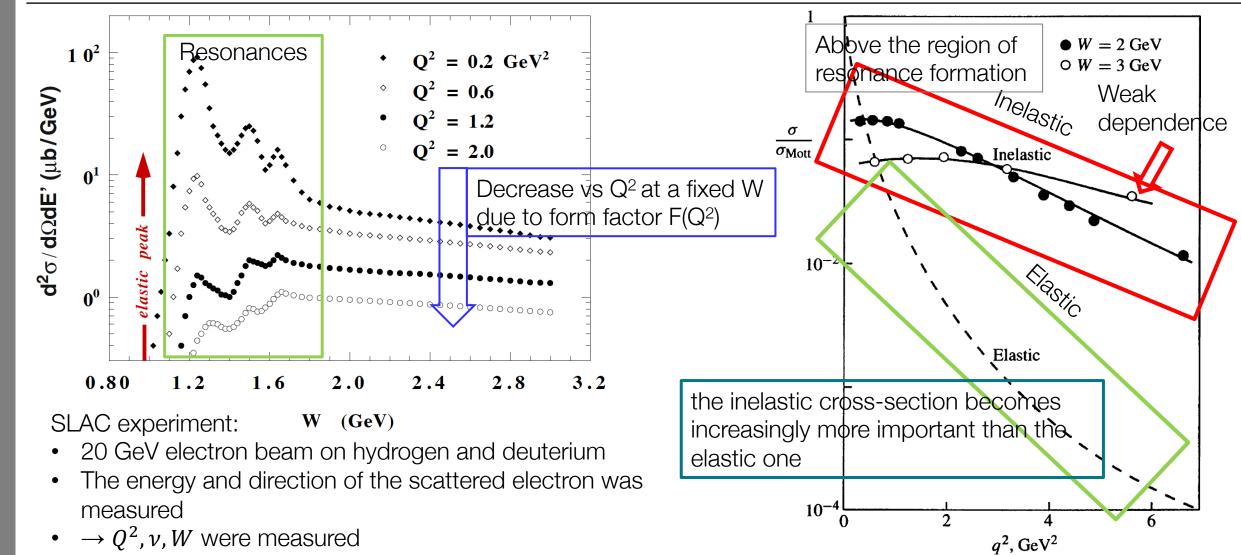
 W_2 and W_1

If we compare the two expressions

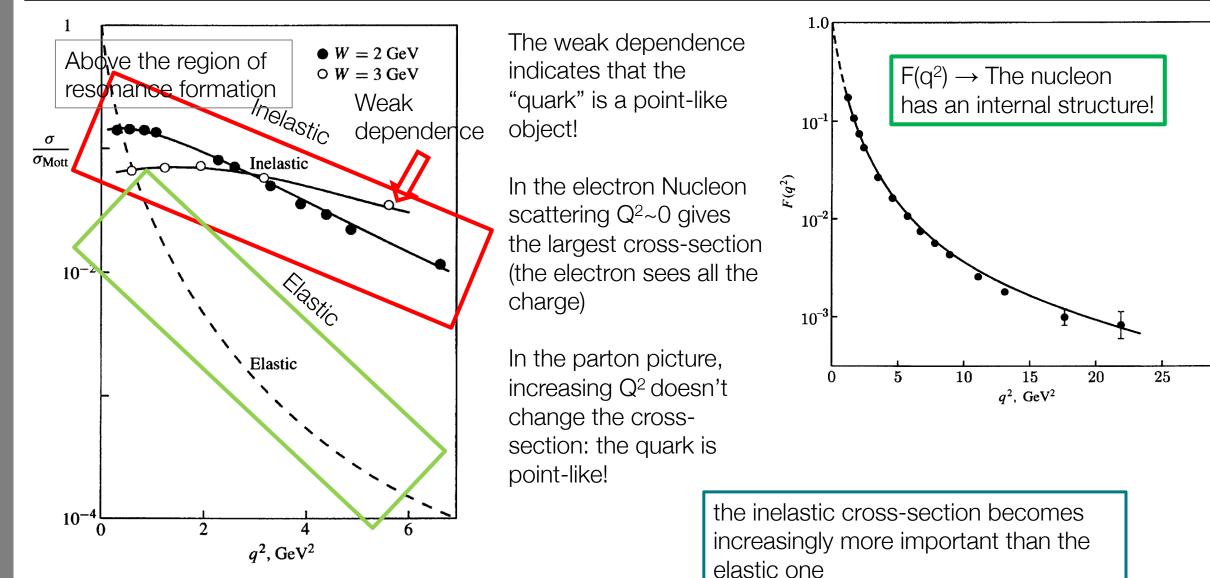


Toni Baroncelli: Deep Inelastic Scattering

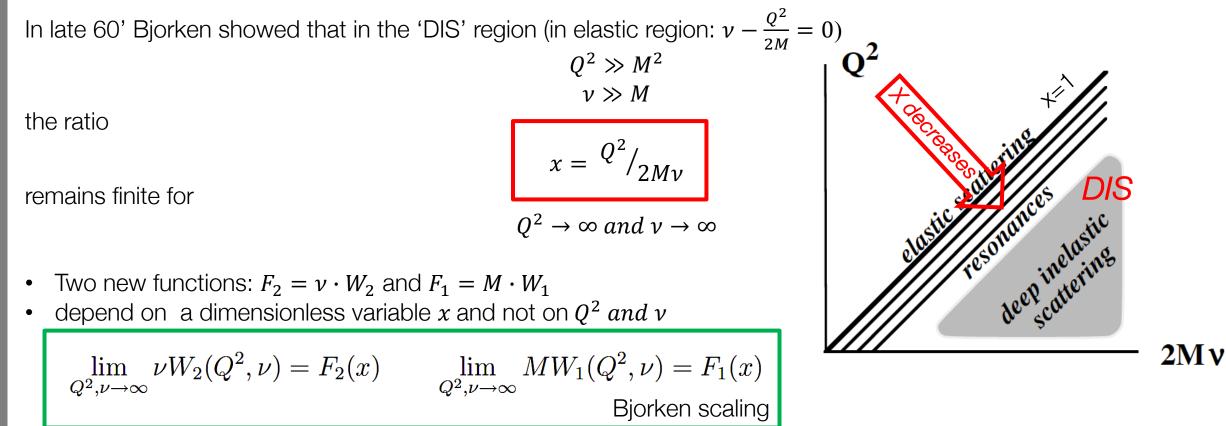
The "x" scaling



The "x" scaling



Toward "x" (F_1 and F_2 introduced earlier)



This hypothesis was

• derived in the assumption DIS consists of elastic lepton scattering on proton constituents $\rightarrow Q^2 = 2m\nu \rightarrow$

x = m/M can be seen as the fraction of nucleon mass carried by the parton

• experimentally tested in the years after using a 20 GeV electron beam on hydrogen and deuterium

From $W_{1,2}$ to $F_{1,2}$ some calculation

We understand more
if we use
$$d^2\sigma/dQ^2dx$$

$$\frac{d^2\sigma}{dQ^2dx} = \frac{v}{x}\frac{d^2\sigma}{dQ^2dv} = \frac{4\pi\alpha^2}{Q^4}\frac{E'(1)}{E}\cos^2\frac{\theta}{2}\left(vW_2(Q^2,v) + vW_1(Q^2,v)2\tan^2\frac{\theta}{2}\right)$$

$$= \frac{4\pi\alpha^2}{Q^4}\frac{E'}{E}\frac{1}{x}\cos^2\frac{\theta}{2}\left(F_2(x) + \frac{vF_1(x)}{M}2\tan^2\frac{\theta}{2}\right)$$
We also passed from $F_1(x,Q^2)$
to $F_1(x) \rightarrow$ scaling assumption
$$F_1(x,Q^2) = Mc^2W_1(Q^2,v)$$

$$F_2(x,Q^2) = vW_2(Q^2,v).$$
multiply and divide F_1 by
$$2x \rightarrow \frac{2x v F_1}{2x M} \quad v = \frac{Q^2}{2Mx}$$

$$\frac{2x v F_1(x)}{2x M} = \frac{2x Q^2 F_1}{2x 2Mx M} = \frac{2x Q^2 F_1}{4M^2 x^2}$$

$$= \frac{4\pi\alpha^2}{Q^4}\frac{E'}{E}\frac{1}{x}\cos^2\frac{\theta}{2}\left(F_2(x) + 2xF_1(x)\frac{Q^2}{4M^2 x^2}2\tan^2\frac{\theta}{2}\right).$$

From $W_{1,2}$ to $F_{1,2}$

$$= \frac{4\pi\alpha^2}{Q^4} \frac{E'}{E} \frac{1}{x} \cos^2 \frac{\theta}{2} \left(F_2(x) + 2xF_1(x) \frac{Q^2}{4M^2 x^2} 2 \tan^2 \frac{\theta}{2} \right).$$

$$\tau = \frac{Q^2}{4M^2 c^2}$$

$$\left(\frac{d\sigma}{d\Omega} \right)_{NS} \left[1 + \frac{q^2}{2M^2} \tan^2(\theta/2) \right] \text{ Spin 1/2 particle}$$

$$x = \frac{Q^2}{2M\nu}$$

$$\left(\frac{d\sigma}{d\Omega} \right)_M = \left(\frac{d\sigma}{d\Omega} \right)_R (1 - \beta^2 \sin^2 \theta/2) \simeq \left(\frac{d\sigma}{d\Omega} \right)_R \cos^2(\theta/2).$$
Spin 0 particle

If we compare the expression with F_1 and F_2 with the elastic expression for e q scattering (2 point-like objects) spin 0 and spin 1/2 (with mass xM) expression we conclude that

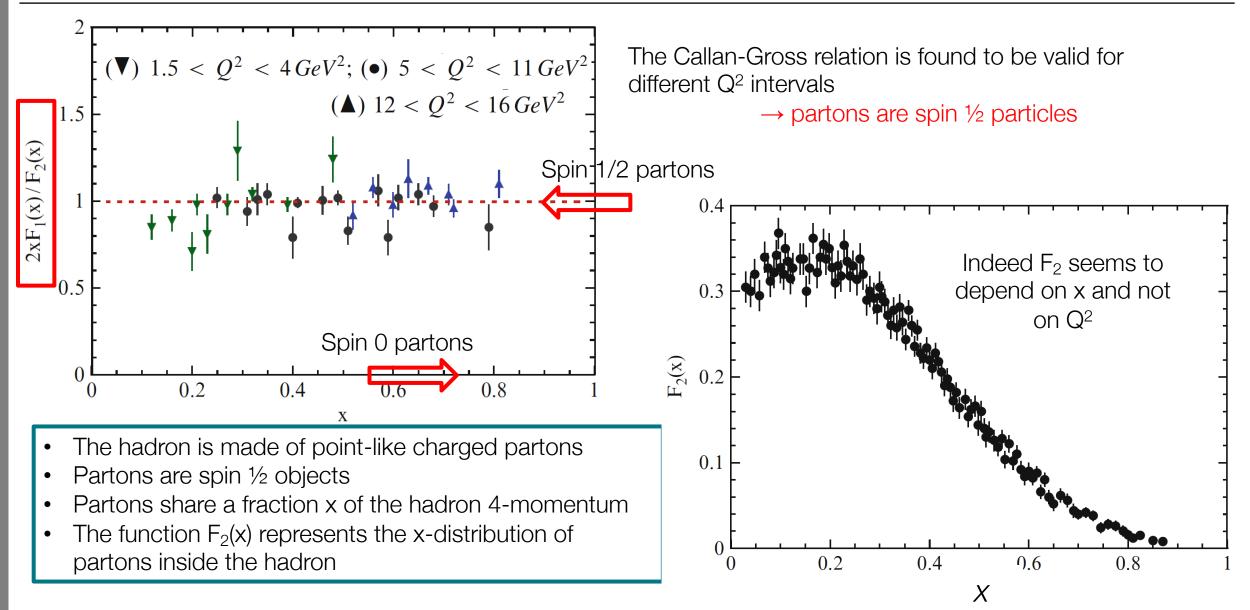
• $F_1 = 0$ for spin 0 particles and

If we want to have the same expression for elastic scattering of a point-like electron on a point-like spin ½ quark

• $F_2 = 2x F_1$ for spin $\frac{1}{2}$ particles (Callan-Gross relation)

Toni Baroncelli: Deep Inelastic Scattering

The Callan-Gross relation



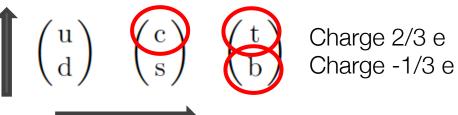
Combining the Quarks (Recap!)

- Nucleons: three *valence quarks* determine the *quantum numbers*
- Virtual quark-antiquark pairs, (sea quarks) exist in the nucleon. Their quantum numbers sum out to zero and do not change those of the nucleon by three valence quarks
- Sea quarks carry a very small fractions x of the nucleon's momentum.
- There are not only "u" and "d" quarks but also s (strange), c (charm), b (bottom) and t (top). These heavy quarks contribute very little to the 'sea'.
- Because of their *electrical charge*, sea quarks are "visible" in deep inelastic scattering.

The cross-section for electro-magnetic interactions is proportional charge², e_k^2

$$\implies F_2(x) = \sum_k e_k^2 \cdot x \cdot f_k(x).$$

 The six quark types can be arranged in doublets (called families or generations), according to their increasing mass :



Pairs of $q\bar{q}$ are continuously created and exist for a time $\Delta t \cdot 2m_q < \hbar \rightarrow$ heavy quarks have 'less time' for creation \rightarrow contribute very little to Deep Inelastic Scattering at ~low or moderate Q². They can be neglected

Call $F_2^{e,p}$ and $F_2^{e,n}$ the structure functions of of protons and neutrons respectively. d_s , $\overline{d_s}$ the x-distribution of d-valence quarks and of anti-d x-distribution of sea quarks (similarly for other quarks)

 $F_2^{\mathrm{e},\mathrm{p}}(x) = x \cdot \left[\frac{1}{9} \left(d_{\mathrm{v}}^{\mathrm{p}} + d_{\mathrm{s}} + \bar{d}_{\mathrm{s}} \right) + \frac{4}{9} \left(u_{\mathrm{v}}^{\mathrm{p}} + u_{\mathrm{s}} + \bar{u}_{\mathrm{s}} \right) + \frac{1}{9} \left(s_{\mathrm{s}} + \bar{s}_{\mathrm{s}} \right) \right] \text{ Valence quarks}$ $F_{2}^{\mathbf{e},\mathbf{n}}(x) = x \cdot \left[\frac{1}{9} \left(d_{\mathbf{v}}^{\mathbf{n}} + d_{\mathbf{s}} + \bar{d}_{\mathbf{s}}\right) + \frac{4}{9} \left(u_{\mathbf{v}}^{\mathbf{n}} + u_{\mathbf{s}} + \bar{u}_{\mathbf{s}}\right)\right]$ 1 () -) The proton and the neutron can be interchanged by exchanging d and u quarks (isospin symmetry)

The proton has two u-quarks and one d-quark, the neutron has two d-quarks and one u-quark.

And the 'average' Nucleon structure function can be written as

5/18 is ~ the mean square charge of u +

$$\begin{split} F_2^{\mathrm{e,N}}(x) &= \frac{F_2^{\mathrm{e,p}}(x) + F_2^{\mathrm{e,n}}(x)}{2} & \text{Term with sea quarks only} \\ &= \frac{5}{18} x \cdot \sum_{q=d,u}^2 \left(q(x) + \bar{q}(x)\right) + \frac{1}{9} x \cdot \left[s_{\mathrm{s}}(x) + \bar{s}_{\mathrm{s}}(x)\right] \\ &= \mathrm{d} \, \mathrm{quarks} \end{split}$$

 F_2 between x and x+dx

Valence

Sea

0.6

F₂^{VN}

x·s

0.2

0.4

х

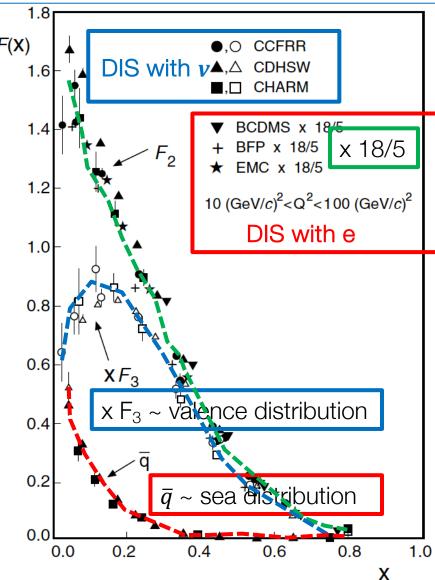
<u>Deep Inelasti</u>

Comparing $F_2^{v,N}$ and $F_2^{e,N}$

In deep inelastic *neutrino* scattering, the charge factors z_f^2 are not *F*(**X**) present, as the weak charge is the same for all quarks. Because of charge conservation and helicity, neutrinos and antineutrinos couple differently to the different types of quarks and antiquarks. These differences, however, cancel out when the structure function of an average nucleon is considered. One then obtains: $F_2^{\mathbf{e},\mathbf{N}}(x) = \frac{5}{18} x \cdot \sum_{a=d.u} (q(x) + \bar{q}(x)) \quad F_2^{\nu,\mathbf{N}}(x) = x \cdot \sum_{f} (q_f(x) + \bar{q}_f(x))$

Experiments show that $F_2^{v,N}$ and $F_2^{e,N}$ are identical ((but for the factor 5/18 due to charge) \rightarrow This means that the charge numbers +2/3 and -1/3 have been correctly attributed to the u- and d-quarks.

- Valence quarks peak at $x \approx 0.17$ and an average value of $\langle x_v \rangle \approx 0.12$
- Sea quark \rightarrow low x values with an average value of $\langle x_s \rangle \approx 0.04$



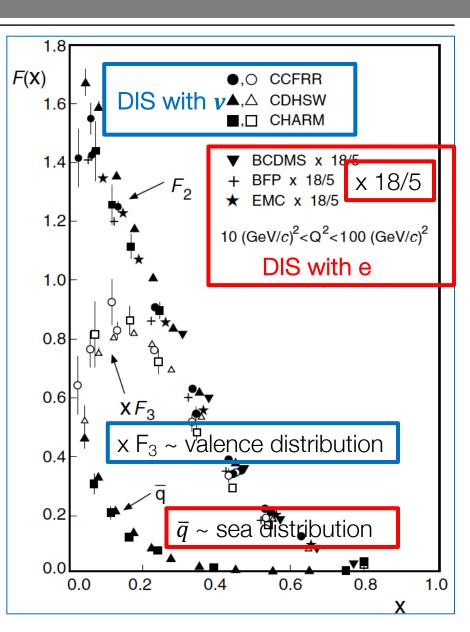
Comparing $F_2^{v,N}$ and $F_2^{e,N}$

WARNING!

The integral of $F_2^{v,N}$ and $F_2^{e,N}$ gives about $0.5 \rightarrow \text{IMPORTANT}$ INFORMATION: half of the momentum of a nucleon is carried by components that are NOT quarks

$$\int_0^1 F_2^{\nu,N}(x) \, \mathrm{d}x \approx \frac{18}{5} \int_0^1 F_2^{\mathrm{e},N}(x) \, \mathrm{d}x \approx 0.5$$

This component is not detected in $F_2^{\upsilon,N}$ or $F_2^{e,N}$. This means it is sensible neither to electromagnetic interactions nor to weak interactions \to gluons



Toni Baroncelli: Deep Inelastic Scattering

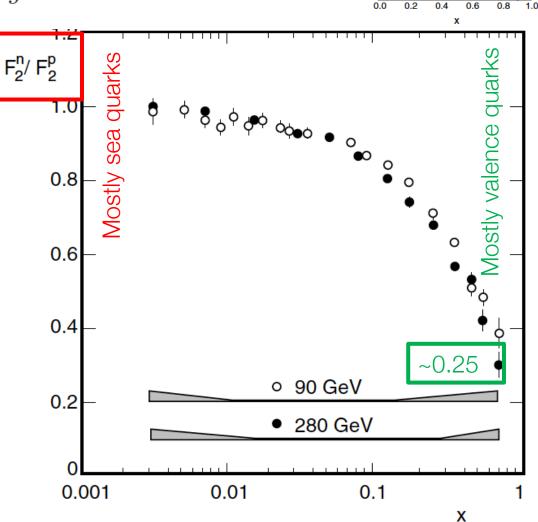
Looking at F_2^n / F_2^p

$$F_2^{\mathbf{e},\mathbf{N}}(x) = \frac{F_2^{\mathbf{e},\mathbf{p}}(x) + F_2^{\mathbf{e},\mathbf{n}}(x)}{2} = \frac{5}{18} x \cdot \sum_{q=d,u} \left(q(x) + \bar{q}(x)\right) + \frac{1}{9} x \cdot \left[s_s(x) + \bar{s}_s(x)\right]$$

- F₂ⁿ / F₂^p ~ 1 at very low x: few valence quarks. The ratio is sensitive to sea quarks expected to be equally present in protons and neutrons
- F_2^n / F_2^p at x ~ 1 (mostly valence quarks) should be about $(2z_d^2 + z_u^2)/(2z_u^2 + z_d^2) \approx \frac{2}{3}$ (neutron / proton), ratio of the square charges of the valence quarks of the neutron and proton
- It is found to be ~ $\frac{1}{4}$ ~ $(\frac{2}{3})^2/(\frac{1}{3})^2$

 z_d , z_u charges

- $(2z_d^2 + z_u^2)/(2z_u^2 + z_d^2)$ neutron proton
- \rightarrow large momentum fractions in the proton are carried by uquarks, and, in the neutron, by d-quarks.



x·v

X·S

Constituent Quarks and their Masses

- valence and sea quarks carry ~1/2 of the momentum of a nucleon.
- Nucleons can be constructed using only the valence quarks.
- quarks are never free \rightarrow Quark masses cannot be measured.
- Masses of 'bare' u and d quarks are (expected to be) small: m_u =1.5 5 MeV/c², m_d =3 9 MeV/c². These
 masses are commonly called *current quark masses*.
- "constituent quarks" masses: enlarged masses (~"incorporating sea & gluons") but unchanged quantum numbers.
- The *constituent quark masses* are much larger (300 MeV/c²). The *constituent masses* must be mainly due
 - the electromagnetic interaction \rightarrow mass differences of a few MeV;
 - Additional effects must be due to differences between quark-quark interaction.

- It is often assumed that $m_u \sim m_d \sim$ few MeV and $m_s \sim m_u$ + 150MeV.
- The masses of heavier quarks are m_c ~1.550 MeV and m_b ~ 4.300 MeV.
- Hadrons and mesons made of the t quarks cannot be formed because the quark t is free for a very short time.

Quark	Colour	Electr. Charge	$\begin{array}{c} \text{Mass } [\text{MeV}/c^2] \\ \text{Bare Quark} \text{Const. Quark} \end{array}$	
down up strange charm bottom top	b, g, r b, g, r b, g, r b, g, r b, g, r b, g, r	-1/3 + 2/3 - 1/3 + 2/3 - 1/3 + 2/3 + 2/3	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 400

Hadrons can be classified in two groups:

- I. the baryons, fermions with half-integral spin
- 2. the mesons, bosons with integral spin.

Baryons.

- Like the proton and neutron, other baryons are also composed of three quarks.
- Since quarks have spin 1/2, baryons have half-integral spin.
- # baryons = # antibaryons are produced in particle interactions.
- baryon number B, = 1 for baryons and B = − 1 for antibaryons. (→ B = +1/3 for quarks, B = − 1/3 for antiquarks.
- Experiments indicate that baryon number is conserved in all particle reactions and decays.
- The quark minus antiquark number is conserved.
- This would be violated by, e. g., the hypothetical decay of the proton: $p \rightarrow \pi^0 + e^+$. Without baryon number conservation this decay mode would be energetically favoured. Yet, it has not been observed.

Quarks in Hadrons: Baryons and Mesons

Mesons.

- Pions are the lightest hadrons ~ 140 MeV/c^2 .
- They are found in three different charge states: $\pi^{-},\,\pi^{0}\,$ and π^{+} .
- Pions have spin 0. It is, therefore, natural to assume that they are composed of a quark and an antiquark: this is the only way to build the three charge states out of quarks.

$$|\pi^+
angle = |u\overline{d}
angle \;\; |\pi^-
angle = |d\overline{u}
angle \;\; |\pi^0
angle = rac{1}{\sqrt{2}}|u\overline{u}+d\overline{d}
angle$$

- The pions are the lightest systems of quarks. Hence, they can only decay into the even lighter leptons or into photons.
- The pion mass is considerably smaller than the constituent quark mass → the interquark interaction energy has a substantial effect on hadron masses.
- The total angular momentum = vector sum of the quark, antiquark spins, integer orbital angular momentum contribution.
- Mesons eventually decay into electrons, neutrinos and/or photons; there is no "meson number conservation (the number of quarks minus the number of antiquarks is zero) → any number of mesons may be produced or annihilated.

V/e MUST introduce another important property called COOUI: needed to satisfy the Pauli principle.

Δ^{++} resonance (baryon!)

- It is made of three u-quarks, has spin J = 3/2 and positive parity; it is the lightest baryon with $J^P = 3/2^+ \rightarrow we$ therefore can assume that its orbital angular momentum is = 0;
- it has a symmetric spatial wave function. In order to yield total angular momentum 3/2, the spins of all three quarks have to be parallel: $\Delta^{++} = |u^{\uparrow}u^{\uparrow}u^{\uparrow}\rangle$
- Thus, the spin wave function is also symmetric.
- The wave function of this system is furthermore symmetric under the interchange of any two quarks, as only quarks of the same flavour are present.
- The total wave function is symmetric, in violation of the Pauli principle.

To fulfil the Pauli principle the colour, a kind of quark charge, has to be introduced \rightarrow distinguish quarks!

HP: Colour can assume three values: red, blue and green. (confirmed by data) antiquarks carry the anti-colours anti-red, anti-blue , and anti-green.

The strong interaction binds quarks into a hadron \rightarrow mediated by force carriers \rightarrow gluons. ... And gluons? Do they carry colour?

Gluons and the QCD

The gluons carry simultaneously colour and anti-colour

 \rightarrow 3 colors x 3 anti-colors \rightarrow 9 combinations.

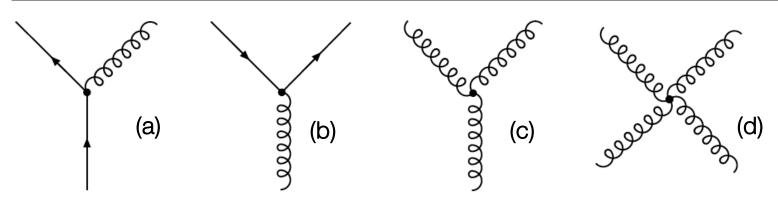
Colour forms combinations that may be organised in multiplets of states: a singlet and an octet. One possible choice is (others exist):

Octet $r\bar{g}$, $r\bar{b}$, $g\bar{b}$, $g\bar{r}$, $b\bar{r}$, $b\bar{g}$, $\sqrt{1/2} (r\bar{r} - g\bar{g})$, $\sqrt{1/6} (r\bar{r} + g\bar{g} - 2b\bar{b})$

Singlet $\sqrt{1/3} (r\bar{r} + g\bar{g} + b\bar{b})$ Net colour of singlet = 0 \rightarrow does not mediate QCD

Exchange of the eight gluons mediate the interaction between particles carrying colour charge: Between quarks but also between gluons

 \rightarrow This is an important difference to the electromagnetic interaction, where the photon has no charge, \rightarrow cannot interact with each other.



The fundamental interaction diagrams of the strong interaction: emission of a gluon by a quark (a), splitting of a gluon into a quark–antiquark pair (b) and "selfcoupling" of gluons (c, d).

	Quarks	Anti-quarks	Gluon	Photon
Charge	$\overline{\checkmark}$	$\overline{\checkmark}$		
Colour		$\overline{\checkmark}$		

Hadrons and the Colour-Neutrality

In principle each hadron might exist in many different colours (the colours of the constituent quarks involved), would

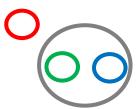
- have different total (net) colours
- but would be equal in all other respects.

In practice only one type of each hadron is observed (one π^- , p, Δ^0 etc.)

additional condition: only colourless particles can exist as free particles \rightarrow Hadrons as colour-neutral objects.

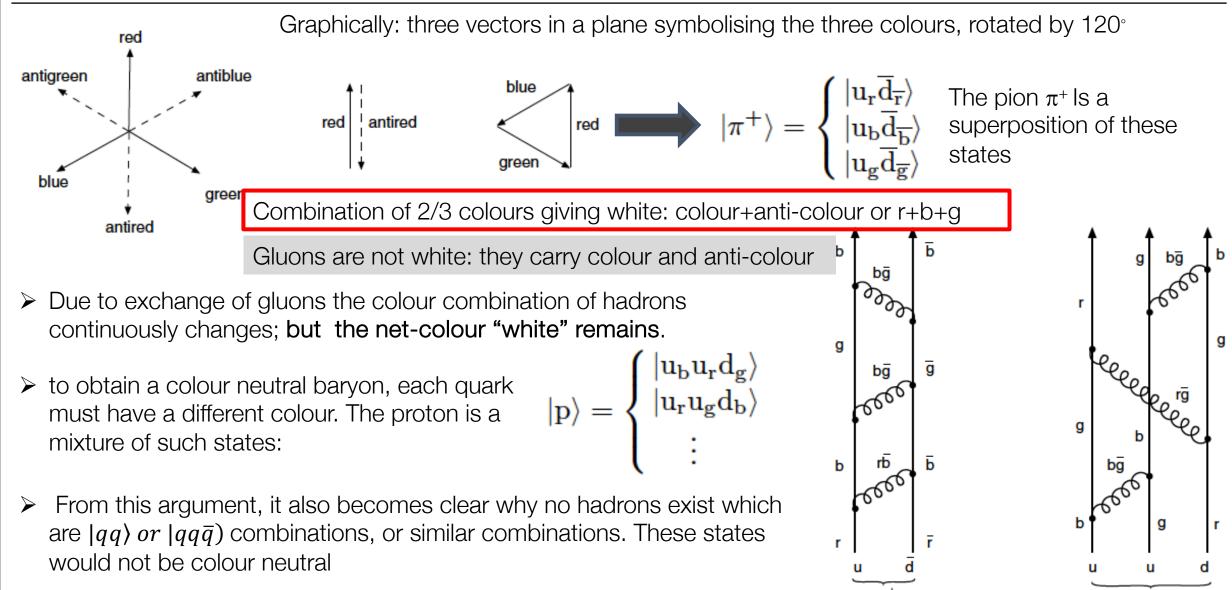
- colour + anti-colour = "white" = white objects!
- Three different colours = "white" as well.
- This is why quarks are not observed as free particles. Breaking one hadron into quarks would produce at least two objects carrying colour: the quark, and the rest of the hadron. This would be a violation of the hadron colour-neutrality.

This phenomenon is called confinement.



This implies that the potential acting on a quark increases with increasing separation \rightarrow in sharp contrast to the Coulomb potential.

Colourless –White- Hadrons

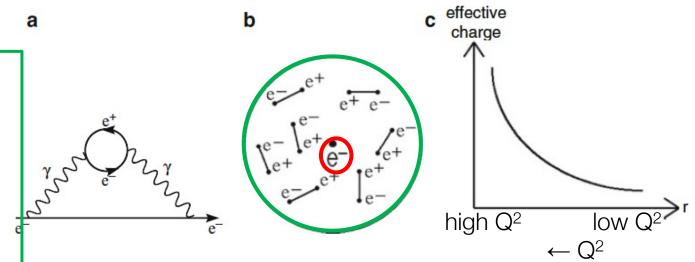


QED: Running α (Q²)

Virtual pairs of e⁺e⁻ in *em* interactions have the effect of screening the real e⁻ charge.

At low Q² is, the the distances between the interacting particles are large \rightarrow

- the virtual photon sees a cloud of charges
- the effective charge of the interacting particles decreases:
- the coupling constant is (a bit) smaller (than for a 'naked' electron).



At high Q^2 is, the the distances between the interacting particles are small \rightarrow

- the virtual photon sees the individual charge
- ➤ the effective charge of the interacting particles increases:
- \succ the coupling constant is large.

A parametrization describing the variation of α with Q² is given here and it is defined at a given scale μ^2 .

 $\alpha(m_e) = 1/137 \ \alpha(m_Z) = 1/128$

 $\alpha(\mu^2)$ $\alpha(Q^2)$

The Running Coupling Constant α_s

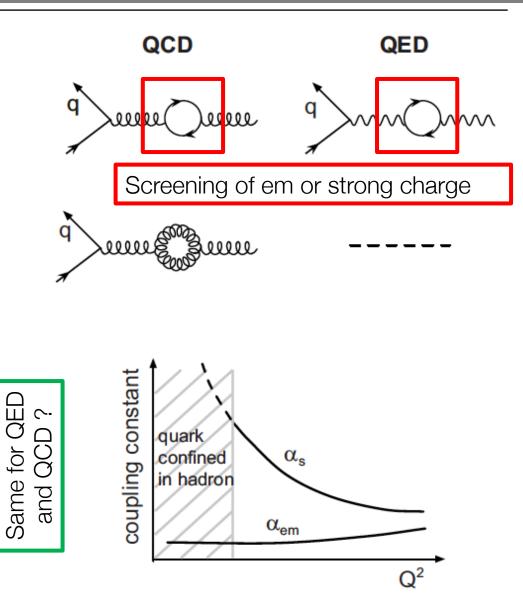
- The coupling "constant" α_s describing the strength of the hadronic interaction between two particles depends on Q².
- While in the em interaction α_{em} depends weakly on Q^2 , in the strong interaction, however, it is stronger.

Why?

The fluctuation of the photon into a electron-positron pair and The fluctuation of the gluon into the quark-antiquark pair generate a

- repulsive force between two quarks of the same colour (same charge) and
- the attractive force between quarks with (opposite charge) colour and anticolour

Generates screening of the electric and strong charge.



The Running Coupling Constant α_s

Gluons couple with gluons (photons do NOT couple to photons)!

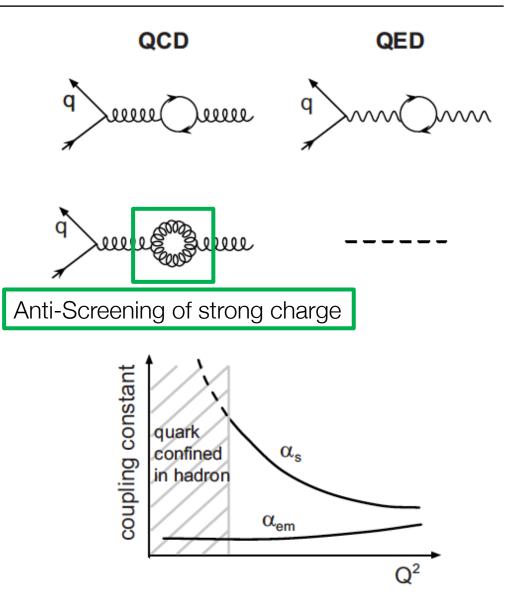
Different colours may give rise to an attractive force if the quantum state is antisymmetric, and a repulsive force if it is symmetric under the interchange of quarks.

This means that the favourite state of three quarks is the state with three quarks of different colours, $q_r q_b q_g$, that is, the colourless state of baryons.

The higher Q² is, the smaller are the distances between the interacting particles; effective charge of the interacting particles increases: the coupling constant increases.

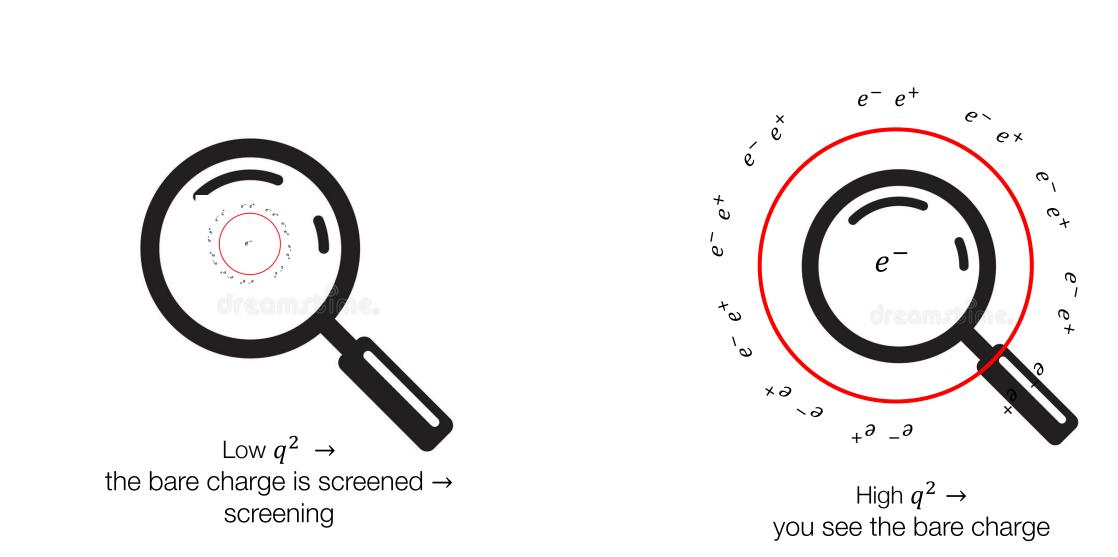
Gluons can fluctuate into gluons \rightarrow this can be shown to give anti-screening. The closer the interacting particles are, the smaller is the charge they see.

 a_s decreases with increasing Q².



Confinement and Asintotic Freedom

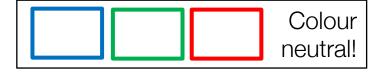
At low Q^2 is, the the distances Quantum electrodynamics Quantum chromodynamics between the interacting particles are large \rightarrow but also the virtual photon sees a cloud of charges the effective charge of the interacting particles decreases: the coupling constant is small. At high Q^2 is, the the distances Confiner Electron charge between the interacting particles Color char are small \rightarrow Coulomb the virtual photon sees the charge individual charge fermi $\alpha \simeq 1/137$ the effective charge of the Distance from the Distance from the bare bare e⁻ charge ah-enerav quark color charge Low-energy High-energy probe interacting particles increases: probe probe "Asymptotic freedom" (a) (b) the coupling constant is large. Asymptotic Freedom



Asymptotic Freedom and Confinement

In the case of gluons the anti-screening is far stronger than the screening. A first-order perturbation calculation in QCD gives:

$$\alpha_s(Q^2) = \frac{12\pi}{(33 - 2 \cdot n_f) \cdot \ln(Q^2/\Lambda^2)}$$



n_f number of flavours that contribute to the interaction

 $Q^2 \rightarrow$ separation among different components

 Λ parameter of the function determined from data

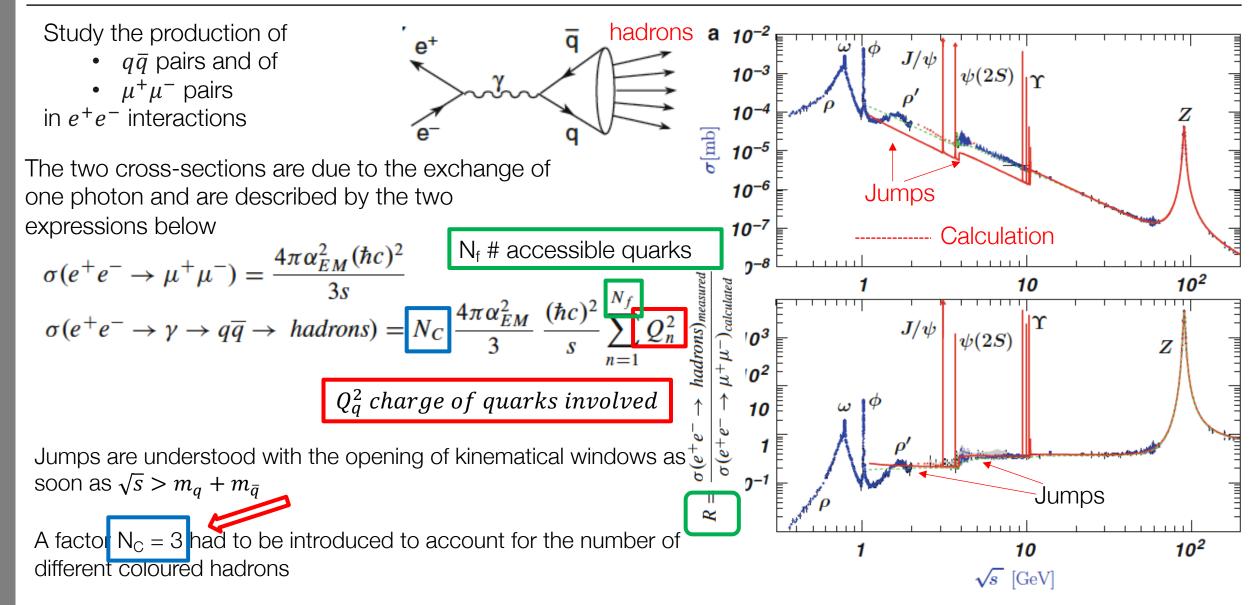
 $33 = 11 \times N_c$

- A heavy qq̄ pair has a very short lifetime → exists at very high Q^{2.} → n_f varies between n_f ≈ 3–6 → when Q² increases n_f increases too.
- The free parameter Λ (1 parameter!) is was found to be $\Lambda \approx 250$ MeV/c by comparing the prediction and data.
- Perturbative expansion procedures in QCD are valid only if $\alpha_s \ll 1$. This is satisfied for Q²>> $\Lambda^2 \approx 0.06$ (GeV/c)².

The formula indicates two regions:

- For very small distances (high values of Q²) " α_s decreases, vanishing asymptotically. In the limit Q² $\rightarrow \infty$, quarks can be considered "free", this is called asymptotic freedom.
- At large distances, (low values of Q²) α_s increases so strongly that it is impossible to separate individual quarks inside hadrons (confinement).

Measuring (~Checking) the Number of Colours: "R"



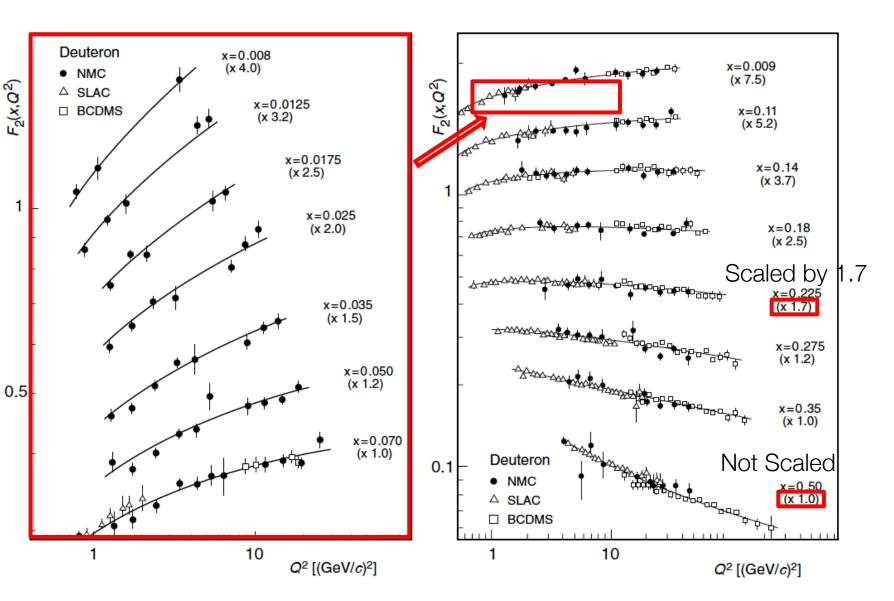
$F_2(x,Q2)$ vs Q2 and Scaling Violations

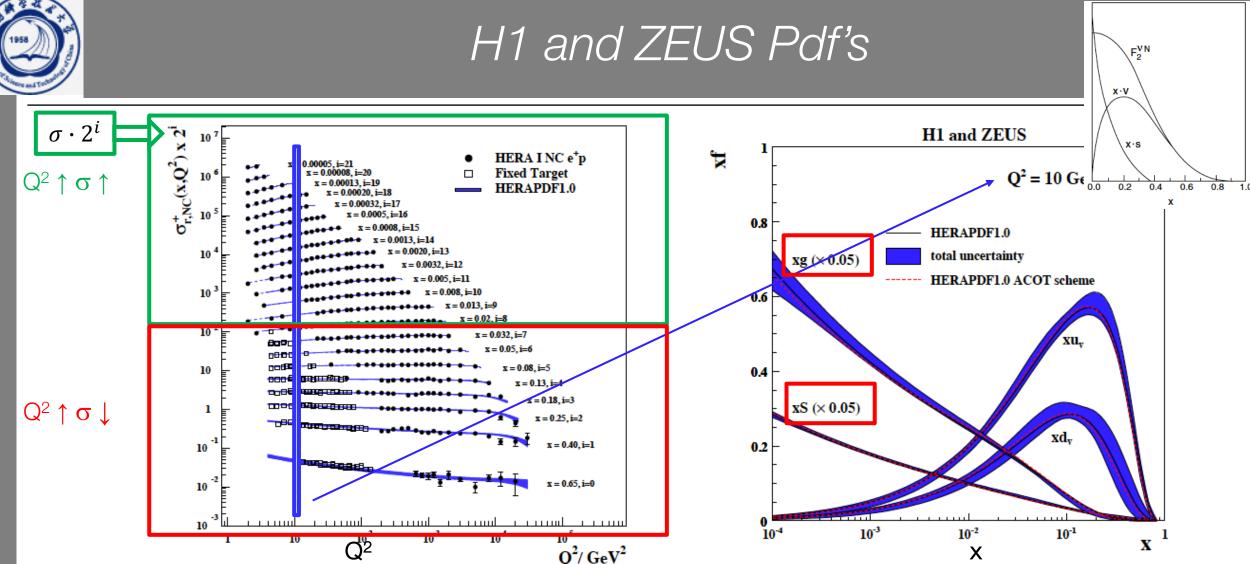
We showed that *initial measurements*

of the structure function F_2 depend only on the scaling variable x (Bjorken scaling).

High precision measurements (and higher energies) showed that F_2 does depend also on Q^2 (but weakly).

Figure \rightarrow shows the experimental measurements of F_2 as a function of Q^2 at several fixed values of x.



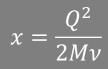


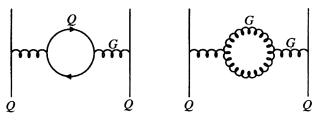
On the left the HERA combined NC e+p reduced cross section and fixed-target data as a function of Q². The error bars indicate the total experimental uncertainty. An analytic parametrisation is superimposed.

The data shows a large range of x and Q^2 .

On the right $x \cdot u_v$, $x \cdot d_v$, $x \cdot g$, $x \cdot s$ (bands are the total uncertainty of the fit).

Scaling Violations in DIS





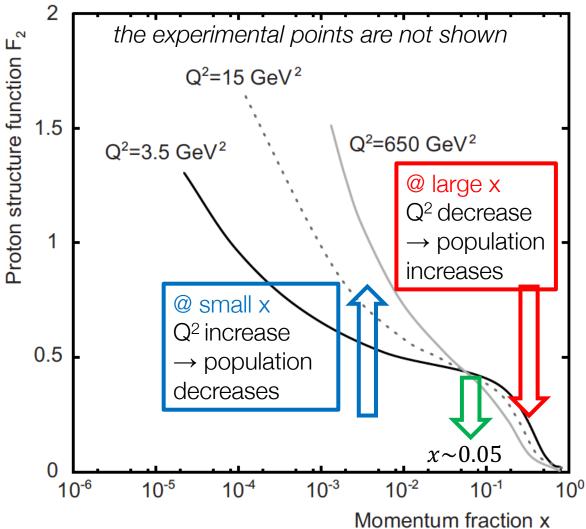
- Quarks emit or absorb gluons
- gluons may split into $q \overline{q}$ pairs or emit gluons \rightarrow
- The momentum distribution changes continuously.

The structure function

- increases with Q^2 at small values of x and
- decreases when Q² increases at large values of x .

This behaviour, called scaling violation, is sketched in Fig. \rightarrow .

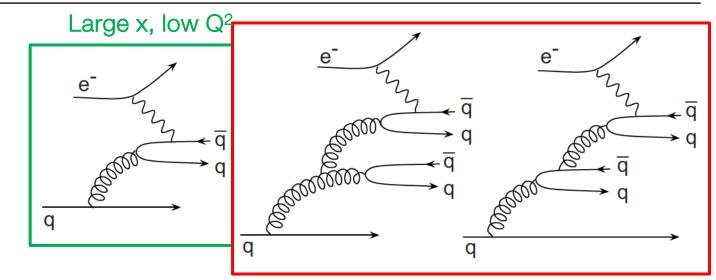
With increasing values of Q² many quarks seen \rightarrow the momentum of the proton is shared among many partons \rightarrow there are few quarks with large momentum fractions in the nucleon \rightarrow quarks with small momentum fractions predominate



Inside the Nucleon

A virtual photon can resolve dimensions of the order of \hbar/q^2 . At small Q² quarks and emitted gluons cannot be distinguished and a quark distribution q(x,Q²) is measured.

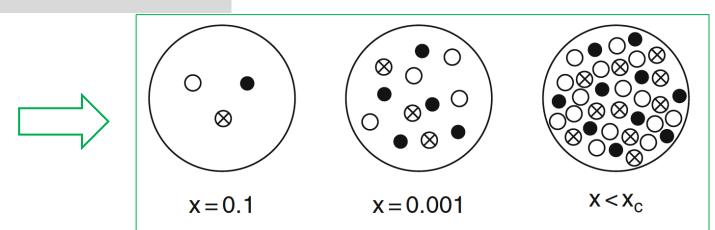
At larger Q^2 and higher resolution, emission and splitting processes must be considered \rightarrow the number of partons that share the momentum of the nucleon increases.



Small \boldsymbol{x} , high Q^2

- The quark distribution $q(x,Q^2)$ at small momentum fractions x, therefore, is larger than $q(x,Q^2)$ at high values of x;
- the effect is reversed for large x.

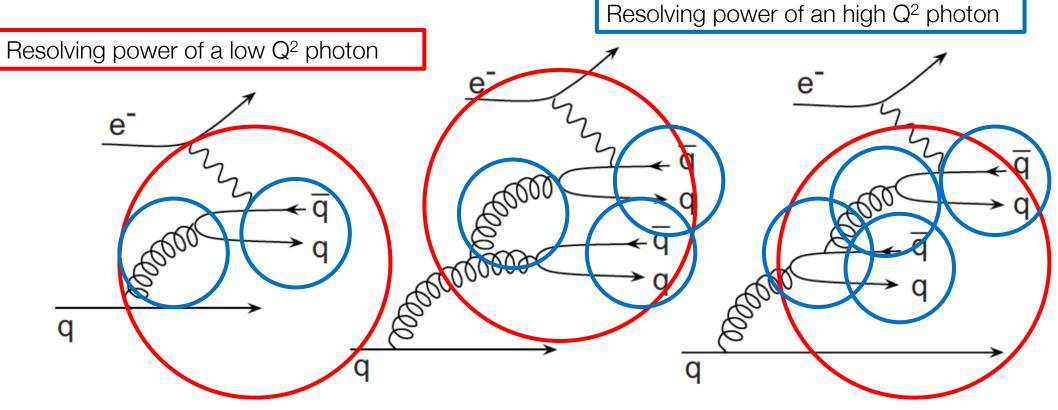
Evolution of the structure function with Q^2 at small values of x and its decrease at large x. The gluon distribution $g(x,Q^2)$ has a similar behaviour.



Visibility of Quark Components

The photon exchanged in DIS has an equivalent length of $\frac{\hbar}{\sqrt{Q^2}}$ and cannot resolve any structure smaller than this

- at low Q² the photon cannot see the effect of gluons and sees the x distribution of quarks
- at high Q² the photon starts to resolve inner structure of quarks and splitting processes must be accounted for.



Extrapolating Structure Functions

The number of partons seen to share the momentum of the nucleon increases when Q² increases.

Problem!

How to extrapolate measured $F_2(x)$ to higher values of $Q^2?$ How do we go Hera \rightarrow LHC

The dependence of the quark and gluon distributions can be described by a system of coupled integral-differential equations [Altarelli Parisi equations].

- If $\alpha_s(Q^2)$ and the shape of $q(x,Q^2)$ and $g(x,Q^2)$ are known at a given value Q^2
- \rightarrow q(x,Q²) and g (x,Q²) can be predicted from QCD for all other values of Q².
- The coupling $\alpha_s(Q^2)$ and the gluon distribution $g(x,Q^2)$, which cannot be directly measured, can be determined from the observed scaling violation of the structure function $F_2(x,Q^2)$.

Altarelli – Parisi Equations (Review Particles Properties)

 $\overline{\partial}$

In QCD, the above process is described in terms of scale-dependent parton distributions $f_a(x, \mu^2)$, where a = g or q and, typically, μ is the scale of the probe Q. For $Q^2 \gg M^2$, the structure functions are of the form

$$F_i = \sum_a C_i^a \otimes f_a, \tag{16.21}$$

where \otimes denotes the convolution integral

$$C \otimes f = \int_{x}^{1} \frac{dy}{y} C(y) f\left(\frac{x}{y}\right) , \qquad (16.22)$$

and where the coefficient functions C_i^a are given as a power series in α_s . The parton distribution f_a corresponds, at a given x, to the density of parton a in the proton integrated over transverse momentum k_t up to μ . Its evolution in μ is described in QCD by a DGLAP equation (see Refs. 14–17) which has the schematic form

$$\frac{\partial f_a}{\partial \ln \mu^2} \sim \frac{\alpha_s(\mu^2)}{2\pi} \sum_b \left(P_{ab} \otimes f_b \right) , \qquad (16.23)$$

where the P_{ab} , which describe the parton splitting $b \to a$, are also given as a power series in α_s . Although perturbative QCD can predict, via Eq. (16.23), the evolution of the parton distribution functions from a particular scale, μ_0 , these DGLAP equations cannot predict them *a priori* at any particular μ_0 . Thus they must be measured at a starting point μ_0 before the predictions of QCD can be compared to the data at other scales, μ . In general, all observables involving a hard hadronic interaction (such as structure functions) can be expressed as a convolution of calculable, process-dependent coefficient functions and these universal parton distributions, e.g. Eq. (16.21).

It is often convenient to write the evolution equations in terms of the gluon, non-singlet (q^{NS}) and singlet (q^S) quark distributions, such that

$$q^{NS} = q_i - \overline{q}_i \quad (\text{or } q_i - q_j), \qquad q^S = \sum_i (q_i + \overline{q}_i) \ . \tag{16.24}$$

The non-singlet distributions have non-zero values of flavor quantum numbers, such as

Nomenclature

 $f_a(x,q^2)$ parton distributions P_{ab} parton splitting $\rightarrow ab$ n_f number of active quark flavors isospin and baryon number. The DGLAP evolution equations then take the form

$$\frac{\partial q^{NS}}{\partial \ln \mu^2} = \frac{\alpha_s(\mu^2)}{2\pi} P_{qq} \otimes q^{NS} ,$$

$$\frac{\partial}{\ln \mu^2} \begin{pmatrix} q^S \\ g \end{pmatrix} = \frac{\alpha_s(\mu^2)}{2\pi} \begin{pmatrix} P_{qq} & 2n_f P_{qg} \\ P_{gq} & P_{gg} \end{pmatrix} \otimes \begin{pmatrix} q^S \\ g \end{pmatrix}, \quad (16.25)$$

where P are splitting functions that describe the probability of a given parton splitting into two others, and n_f is the number of (active) quark flavors. The leading-order

Altarelli – Parisi Equations (Review Particles Properties)

into two others, and n_f is the number of (active) quark flavors. The leading-order Altarelli-Parisi [16] splitting functions are

$$P_{qq} = \frac{4}{3} \left[\frac{1+x^2}{(1-x)} \right]_+ = \frac{4}{3} \left[\frac{1+x^2}{(1-x)_+} \right] + 2\delta(1-x) , \qquad (16.$$

$$P_{qg} = \frac{1}{2} \left[x^2 + (1-x)^2 \right] , \qquad (16.27)$$

$$P_{gq} = \frac{4}{3} \left[\frac{1 + (1 - x)^2}{x} \right] , \qquad (16.28)$$

$$P_{gg} = 6 \left[\frac{1-x}{x} + x(1-x) + \frac{x}{(1-x)_{+}} \right] \\ + \left[\frac{11}{2} - \frac{n_f}{3} \right] \delta(1-x),$$
(16.29)

where the notation $[F(x)]_+$ defines a distribution such that for any sufficiently regular test function, f(x),

$$\int_0^1 dx f(x) [F(x)]_+ = \int_0^1 dx \ (f(x) - f(1)) F(x) \ . \tag{16.30}$$

In general, the splitting functions can be expressed as a power series in α_s . The series .26)contains both terms proportional to $\ln \mu^2$ and to $\ln 1/x$. The leading-order DGLAP evolution sums up the $(\alpha_s \ln \mu^2)^n$ contributions, while at next-to-leading order (NLO) the sum over the $\alpha_s(\alpha_s \ln \mu^2)^{n-1}$ terms is included [18,19]. In fact, the NNLO contributions to the splitting functions and the DIS coefficient functions are now also all known [20–22].

In the kinematic region of very small x, it is essential to sum leading terms in $\ln 1/x$, independent of the value of $\ln \mu^2$. At leading order, LLx, this is done by the BFKL equation for the unintegrated distributions (see Refs. [23,24]). The leadingorder $(\alpha_s \ln(1/x))^n$ terms result in a power-like growth, $x^{-\omega}$ with $\omega = (12\alpha_s \ln 2)/\pi$, at asymptotic values of $\ln 1/x$. More recently, the next-to-leading $\ln 1/x$ (NLLx) contributions have become available [25,26]. They are so large (and negative) that the result appears to be perturbatively unstable. Methods, based on a combination of collinear and small x resummations, have been developed which reorganize the perturbative series into a more stable hierarchy [27–30]. There are indications that small x resummations become necessary for real precision for $x \leq 10^{-3}$ at low scales. On the

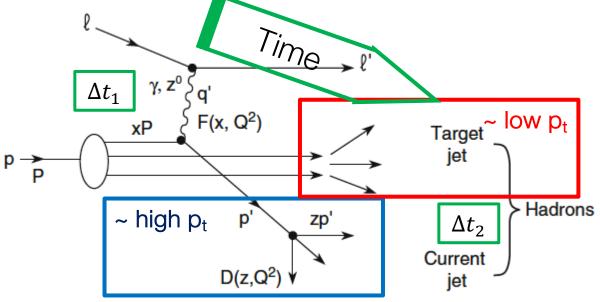
Symmetries / Significant properties

 P_{qg}, P_{gg} : symmetric $x \leftrightarrow (1 - x)$ P_{qq}, P_{gg} : diverge for $x \rightarrow 1$ P_{gq}, P_{gg} : diverge for $x \rightarrow 0$ • $P_{aat} = 0$

•
$$P_{qq}, P_{gg}$$
: diverge for $x \to 1$

•
$$P_{\bar{q},q} = P_{q,q}$$

Fragmentation of quarks into hadrons



- 1. γ -parton collision occurs within a time $\Delta t_1 \approx \frac{\hbar}{v}$, v = E E'
- 2. The quark hadronization has a time $\Delta t_2 \approx \frac{\hbar}{m_p c^2} \approx 10^{-24} s$

If $v \gg m_p$, one has $\Delta t_1 \ll \Delta t_2$ and the two subprocesses are distinct.

DIS second stage: the parton fragments into two jets of hadrons (hadronises).

naked quarks to hadrons in the final state.

The fragmentation function,

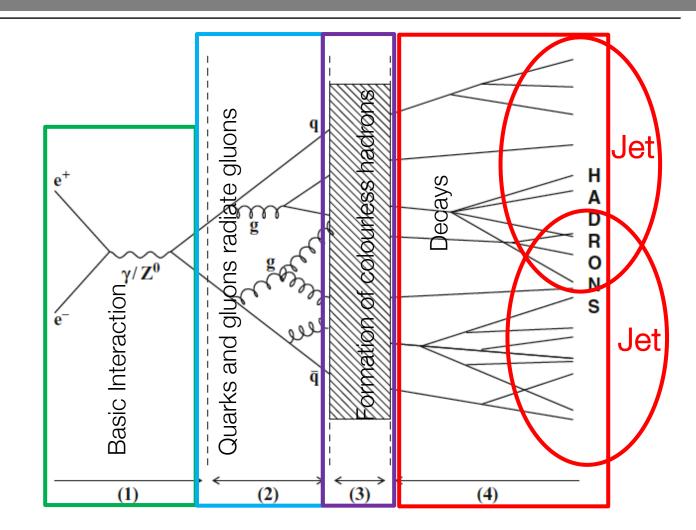
 $D(z;Q^2)$ describes the hadronisation.

D(z;Q²): probability that a given hadron carries a fraction z of the interacting parton energy, it must be estimated by data.

In this stage, the gluons play an important role and modify the structure function, making it dependent on Q².

The Fragmentation Process

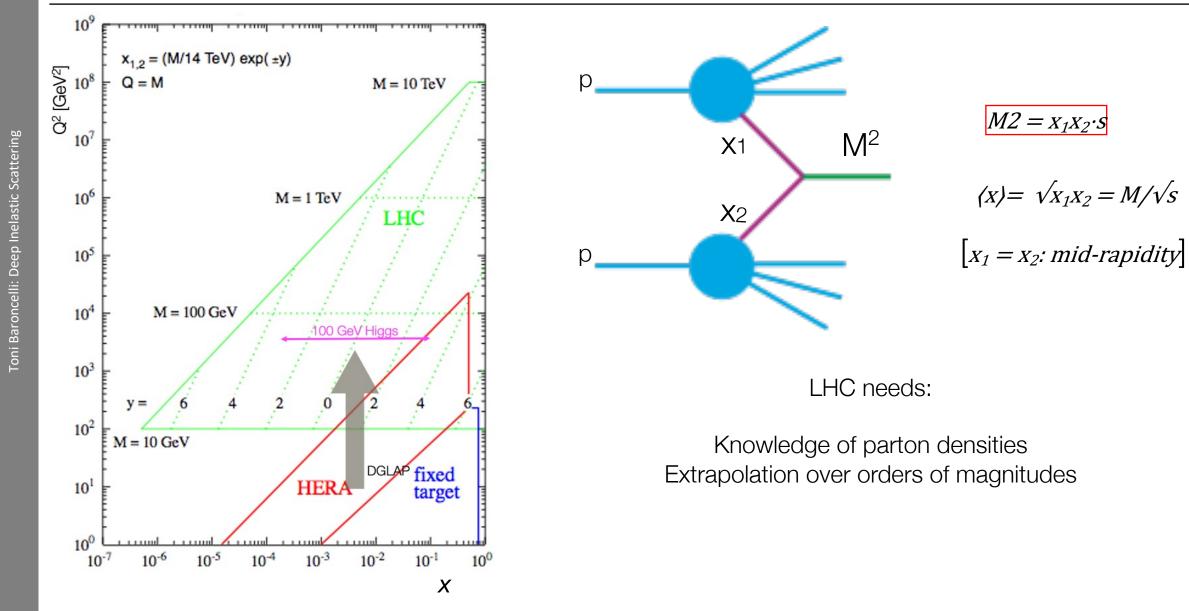
- 1. Basic (EW) Interaction
- 2. The quark or the antiquark can radiate a gluon, which can radiate another gluon, or produce a $q\bar{q}$ pair.
- 3. The coloured partons (quarks and gluons) fragment (hadronize) in colourless hadrons. The process cannot be treated with perturbation methods; in the absence of an exact analysis, the fragmentation is described by *models*
- 4. In the fourth phase, the produced hadronic resonances decay rapidly into hadrons



Kinematic Domains

 $M2 = x_1 x_2 \cdot s$

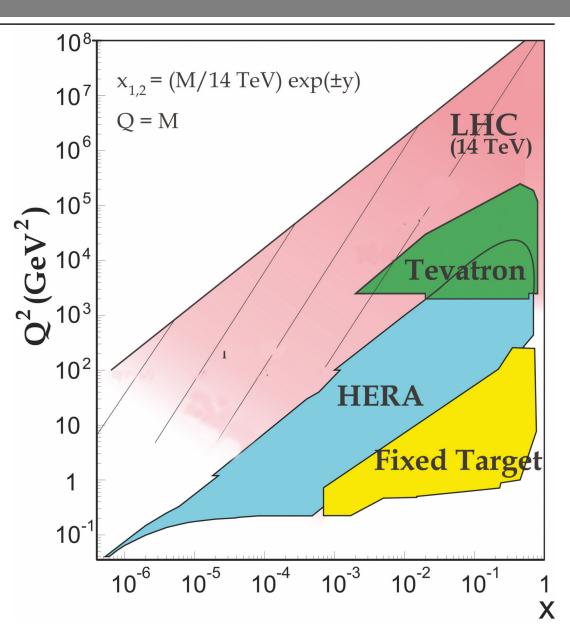
 $\langle x \rangle = \sqrt{X_1 X_2} = M/\sqrt{s}$



Accessible kinematic regions in DIS

Kinematic domains in x and Q² probed by fixed-target and collider experiments.

- x and Q² domains probed by fixed-target and collider experiments.
- Some of the final states accessible at the LHC are indicated
- Q² = M² is the mass of some states accessible to LHC.
- For example, exclusive J/ ψ and upsilon production at high |y| at the LHC may probe/imply the gluon PDF down to x ~ 10⁻⁵.



Where to Measure PDFs?

		Process	Subprocess	Partons	x range
		$\ell^{\pm}\left\{p,n\right\} \to \ell^{\pm} X$	$\gamma^* q \to q$	q, ar q, g	$x \gtrsim 0.01$
Fixed – target experiments		$\ell^{\pm} n/p \to \ell^{\pm} X$	$\gamma^* d/u o d/u$	d/u	$x\gtrsim 0.01$
	_	$pp \rightarrow \mu^+ \mu^- X$	$uar{u}, dar{d} o \gamma^*$	$ar{q}$	$0.015 \lesssim x \lesssim 0.35$
		$pn/pp \rightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \rightarrow \gamma^*$	$ar{d}/ar{u}$	$0.015 \lesssim x \lesssim 0.35$
		$ u(\bar{\nu}) N \to \mu^{-}(\mu^{+}) X $	$W^*q ightarrow q'$	q,ar q	$0.01 \lesssim x \lesssim 0.5$
		$\nu N ightarrow \mu^- \mu^+ X$	$W^*s \rightarrow c$	8	$0.01 \lesssim x \lesssim 0.2$
	L	$\bar{\nu} N \to \mu^+ \mu^- X$	$W^* \bar{s} \to \bar{c}$	\overline{s}	$0.01 \lesssim x \lesssim 0.2$
	Г	$e^{\pm} p \to e^{\pm} X$	$\gamma^* q \rightarrow q$	g,q,ar q	$10^{-4} \lesssim x \lesssim 0.1$
HERA & Tevatron		$e^+ p \to \bar{\nu} X$	$W^+\left\{d,s\right\} \to \left\{u,c\right\}$	d,s	$x\gtrsim 0.01$
TILINA & Tevalion	1	$e^{\pm}p \rightarrow e^{\pm} c\bar{c}X, e^{\pm} b\bar{b}X$	$\gamma^* c \to c, \gamma^* g \to c \overline{c}$	c, b, g	$10^{-4} \lesssim x \lesssim 0.01$
		$e^{\pm}p \rightarrow \text{jet}+X$	$\gamma^*g \to q\bar{q}$	g	$0.01 \lesssim x \lesssim 0.1$
	7	$p\bar{p}, pp \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g,q	$0.00005 \lesssim x \lesssim 0.$
LHC		$p\bar{p} \to (W^{\pm} \to \ell^{\pm} \nu) X$	$ud \to W^+, \bar{u}\bar{d} \to W^-$	$u,d,ar{u},ar{d}$	$x\gtrsim 0.05$
		$pp \to (W^{\pm} \to \ell^{\pm} \nu) X$	$u\bar{d} \rightarrow W^+, d\bar{u} \rightarrow W^-$	$u,d,ar{u},ar{d},g$	$x\gtrsim 0.001$
		$p\bar{p}(pp) \to (Z \to \ell^+ \ell^-)X$	$uu, dd,(u\bar{u},) \rightarrow Z$	u,d,(g)	$x\gtrsim 0.001$
	$pp \rightarrow W^- c, \ W^+ \overline{c}$	$gs \rightarrow W^-c$	s, \overline{s}	$x \sim 0.01$	
	- 1	$pp \to (\gamma^* \to \ell^+ \ell^-) X$	$uar{u}, dar{d}, o \gamma^*$	$ar{q},g$	$x\gtrsim 10^{-5}$
		$pp \to (\gamma^* \to \ell^+ \ell^-) X$	$u\gamma, d\gamma, ightarrow \gamma^*$	γ	$x\gtrsim 10^{-2}$
		$pp ightarrow b ar{b} X, t ar{t} X$	$gg ightarrow b ar{b}, t ar{t}$	g	$x\gtrsim 10^{-5}, 10^{-2}$
		$pp \rightarrow$ exclusive J/ψ , Υ	$\gamma^*(gg) o J/\psi, \ \Upsilon$	g	$x\gtrsim 10^{-5}, 10^{-4}$
		$pp o \gamma X$	$gq ightarrow \gamma q, g ar q ightarrow \gamma ar q$	g	$x\gtrsim 0.005$

Measuring $\alpha_{\rm s}(Q^2)$ at different Q^2

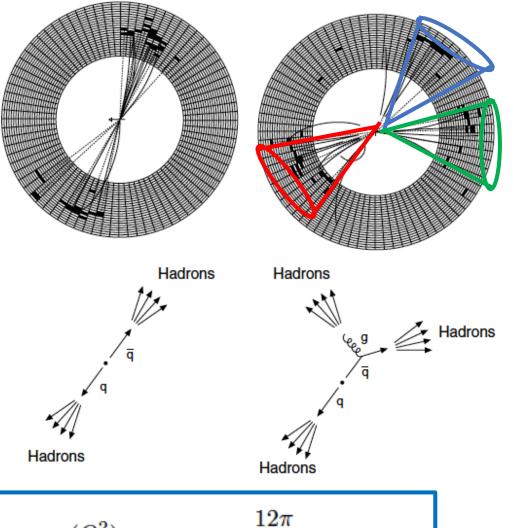
Jet production in pp, $p\overline{p}$ interactions

- At high energies, hadrons are typically produced in two jets, emitted in opposite directions.
- These jets are produced in the hadronization of the primary quarks and antiquarks.
- In addition to simple $q\bar{q}$ production, higher-order processes can happen. For example, a high-energy ("hard") gluon can be emitted, producing a third jet of hadrons.

This is ~ to the emission of a γ in em bremsstrahlung. The em coupling constant α is small \rightarrow emission of a hard photon is a relatively rare process.

The probability of gluon bremsstrahlung (right part of the Figure) is given by the coupling constant α_{s} .

A comparison of the 3- and 2-jet event rates $\rightarrow \alpha_s$.

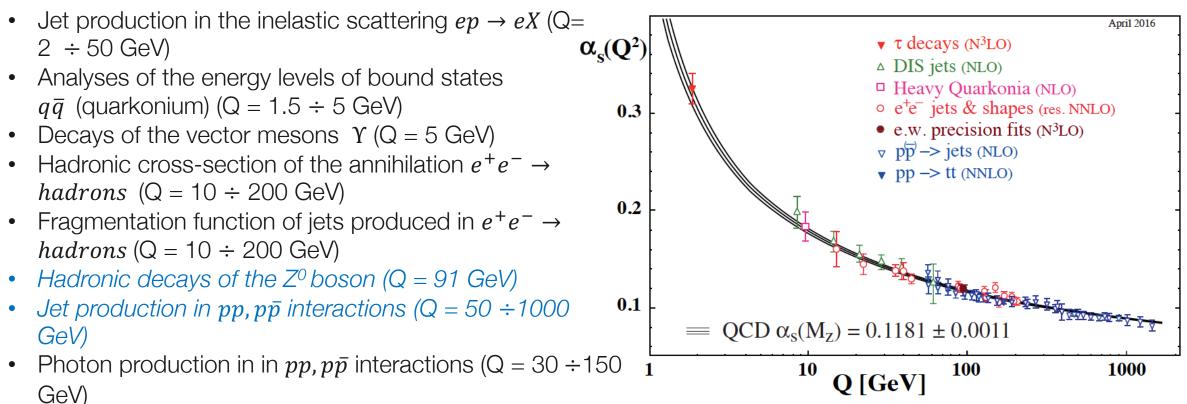


Measurements at different energies show that α_s decreases with increasing Q^2 as predicted by

More Ways of Measuring $\alpha_{\rm s}(Q^2)$

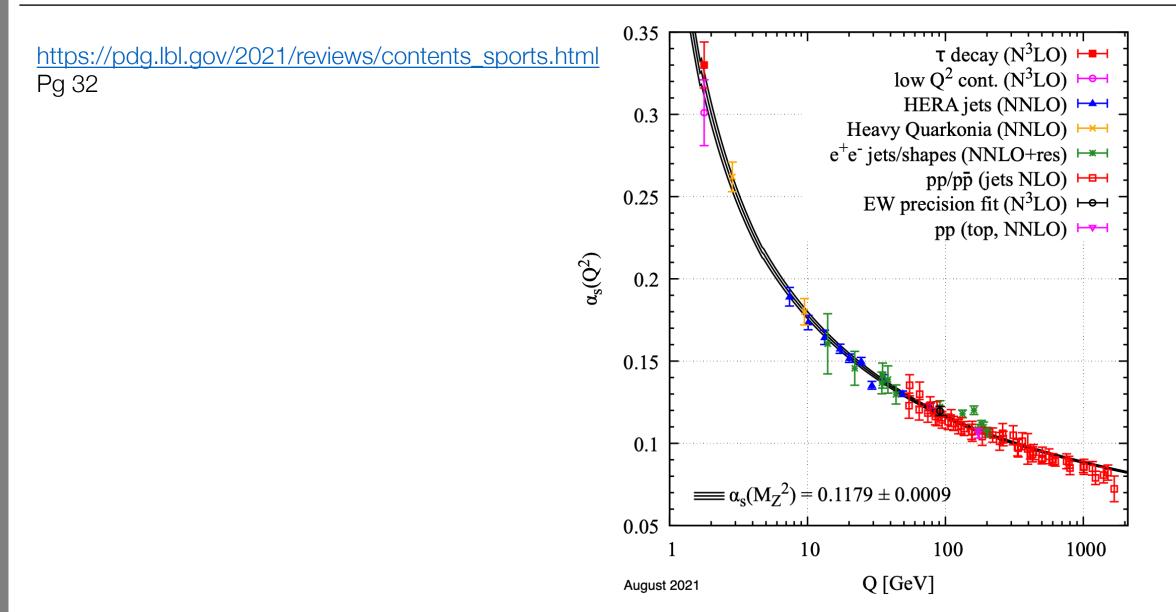
Review of Particles Properties 2018 edition: http://pdg.lbl.gov/2018/reviews/rpp2018-rev-qcd.pdf

- Hadronic decays of the τ lepton: $\tau \rightarrow v_{\tau} + hadrons$ (Q=1.77GeV)
- Evolution of the nucleon structure functions measured in inelastic scattering of e,μ,ν on nucleons (Q=2 ÷ 50 GeV)



Toni Baroncelli: Deep Inelastic Scattering

~today's version of the same pdg plot



- Povh, Rith, Scholz, Zetsche: Particles and Nuclei, An Introduction to the Physical Concepts. Springer 1.
- Braibant, Giacomelli, Spurio: Particles and Fundamental Interactions, An Introduction to Particle Physics, 2. Springer
- 3. P.Bagnaia: Sapienza University, Particle Physics, Hadron Structure
- M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018), Standard Model and Related 4. Topics
- http://th-www.if.uj.edu.pl/~erichter/dydaktyka/Dydaktyka2017/SpecFizCzast-2017/WyklSpec-4-theory-5. 2017.pdf from (http://th-www.if.uj.edu.pl/~erichter/dydaktyka/Dydaktyka2017/SpecFizCzast-2017/) Collider Physics at Hera, M.Klein and R.Yoshida
- 6.

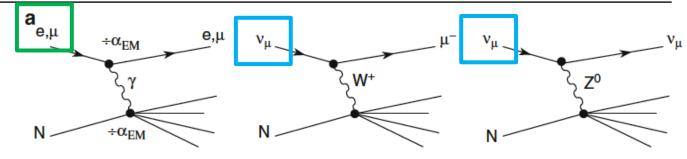
Deep Inelastic Scattering

Particle Physics Toni Baroncelli

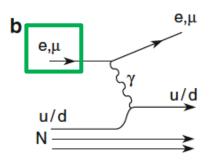
End of Deep Inelastic Scattering

How to measure the $W_2 \rightarrow F_2$ Structure Function?

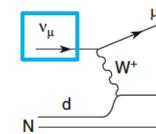
 $ep: e^{\pm} + p \rightarrow e^{\pm} + X^{+}$ $\mu p: \mu^{\pm} + p \rightarrow \mu^{\pm} + X^{+}$

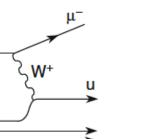


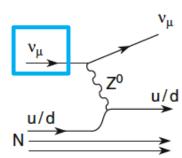
Incoming particle	Outgoing particle	Parton involved	
lepton ⁺	$lepton^+$	Sea & valence	
lepton ⁻	lepton ⁻	Sea & valence	
$ u_{\mu}$	μ^-	$d \to u (CC, W^+)$	
$ u_{\mu}$	μ^-	$\bar{u} \rightarrow \bar{d} \; (CC, W^-)$	
$ u_{\mu}$	$ u_{\mu}$	$ u_{\mu}$	
$ u_{\mu}$			
$\overline{ u_{\mu}}$			ν _μ ·



(i) EM interaction



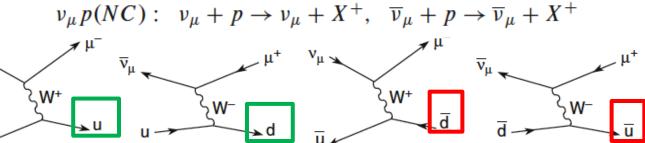




(iii) NC weak interaction

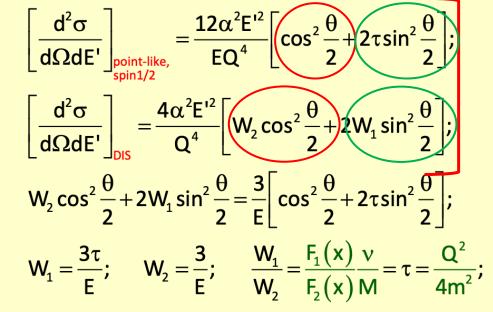
 $\nu_{\mu} p(CC) : \nu_{\mu} + p \to \mu^{-} + X^{++}, \ \overline{\nu}_{\mu} + p \to \mu^{+} + X^{0}$

(ii) CC weak interaction



Bjorken scaling : Callan-Gross formula

a) the cross sections of pointlike spin $\frac{1}{2}$ particle of mass m (à la Rosenbluth with $G_E=G_M=1$):



b) from the kinematics of elastic scattering of point-like constituents of mass m :

Q² = 2mv = 2Mvx → m = xM;

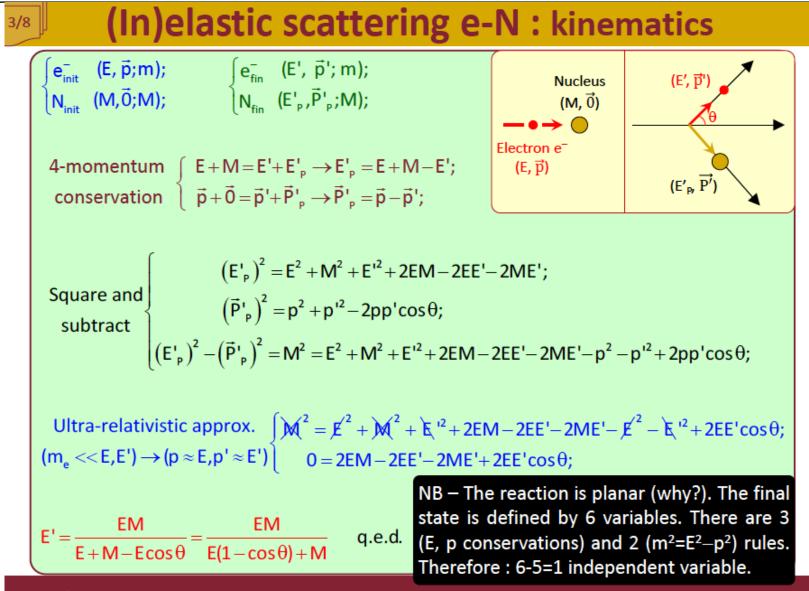
$$\frac{F_1(x)}{F_2(x)} = \frac{Q^2}{4m^2} \frac{M}{v} = \frac{2mv}{4m^2} \frac{M}{v} = \frac{M}{2m} = \frac{1}{2x};$$
2xF₁(x) = F₂(x).

Warnings :

- don't confuse M (the nucleon) with m (the constituent);
- don't confuse the inelastic scattering ep with the elastic scattering eq;
- x refers to the inelastic case;
- an hypothetical [*nobody uses it*] variable ξ , analogous to x but for the constituent scattering; in this case, Q²=2mv ξ , ξ = **1**;
- we learn that x = m/M [REMEMBER].

Prof. Paolo Bagnaia University of Rome "La Sapienza"

E-N Scattering Kinematics



Callan-Gross Relation (spin 1/2 target)

